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1 SYSTEM OF LINEAR EQUATIONS

1 System of linear equations

Definition

A system of linear equations (or linear system) is a set of linear equations in the form

a11x1+ a12x2+· · · + a1nxn = b1

a21x1+ a22x2+· · · + a2nxn = b2
...

am1x1+am2x2+· · · + amnxn = bm,

The aij are called the coefficients of the system and bi are called the right-hand side of
the system.
A solution of a linear system is any tuple of numbers that makes each equation a true
statement. The set of all solutions of a system is called a general solution of the system.
Two systems with equal solution sets are called equivalent. A system with no solution
is called inconsistent.

Definition

An array of numbers such as the one below is called a matrix. (See page 12 for a formal
definition.) The matrix A containing the coefficients of a linear system is called the
coefficient matrix of the system. The matrix A|b which contains also the right-hand
side is called the augmented matrix of the system.

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
am1 am2 . . . amn

 A|b =


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

... . . . ...
...

am1 am2 . . . amn bm


Below is an example of a system of three linear equations in four variables x1, x2, x3 and x4
and the corresponding augmented matrix of the system.

3x1 − x2 + 2x3 + x4 = 4
−x1 + x2 − x3 + 5x4 = −2

x1 + 0.25x4 = 0

 3 −1 2 1 4
−1 1 −1 5 −2

1 0 0 0.25 0


Some operations with equations do not change the solution of the system. The simplest of
these are called elementary operations. If such operations are performed on the rows of
the augmented matrix of the system, they are called elementary row operations.

Definition

There are three types of elementary row operations:
• swapping two rows,
• multiplying a row by a nonzero number,
• adding a multiple of one row to another row.
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1 SYSTEM OF LINEAR EQUATIONS

1.1 Gaussian elimination

Definition

A matrix is said to be in row echelon form if each row except for the first one starts with
more zeros than the row above it.

Gaussian elimination is sequence of elementary row operations performed on the aug-
mented matrix of a linear system to convert the matrix into row echelon form. The
corresponding equivalent system then is solvable by back substitution.



a11 a12 · · · a17 b1
a21 a22 · · · a27 b2
...

...
. . .

...
...

a61 a26 · · · a67 b6


el. row oper.−−−−−−−−−→−→ · · · −→



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


augmented matrix of a linear system row echelon form

∗ nonzero pivot
∗ any number
basic (pivot) columns

The ”shape” of the echelon form of any matrix and in particular the position and number
of pivots is uniquely determined by the matrix.

There are three possibilities for the number of solutions of a linear system.

• A system has no solution if one of the pivots sits in
the right-hand side column.


∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 ∗
0 0 0 0 0 0 0



• A system has one solution if none of the pivots sit
in the right-hand side column and the number of vari-
ables is equal to the number of nonzero rows.


∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 0


• A system has infinitely many solutions if none of
the pivots sit in the right-hand side column and the
number of variables is less than the number of nonzero
rows.


∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 0



Definition

The rank of a matrix A is the number of nonzero rows in the matrix in row echelon form
obtained from matrix A by Gaussian elimination. It is denoted by rank(A).
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1 SYSTEM OF LINEAR EQUATIONS

Example 1

Solve the following system using Gaussian elimination.

x1 + x2 − 7x3 + 3x4 − 3x5 = 6
6x2 + 6x3 + 6x4 + 3x5 = 24

2x1 + 9x2 − 7x3 + 11x4 − 7x5 = 23
−3x1 − x2 +24x3 − 4x4 +11x5 = 4

3x1 + 6x2 −17x3 + 17x4 −10x5 = 45


1 1 −7 3 −3 6
0 6 6 6 3 24
2 9 −7 11 −7 23
−3 −1 24 −4 11 4

3 6 −17 17 −10 45


R2/3

R3 − 2R1

R4+3R1

R5−3R1

−→


1 1 −7 3 −3 6
0 2 2 2 1 8
0 7 7 5 −1 11
0 2 3 5 2 22
0 3 4 8 −1 27

2R3 − 7R2

R4−R2

2R5−3R2

−→

−→


1 1 −7 3 −3 6
0 2 2 2 1 8
0 0 0 −4 −9 −34
0 0 1 3 1 14
0 0 2 10 −5 30

R3↔R4 −→


1 1 −7 3 −3 6
0 2 2 2 1 8

0 0 1 3 1 14
0 0 0 −4 −9 −34
0 0 2 10 −5 30


R5−2R3

−→

−→


1 1 −7 3 −3 6
0 2 2 2 1 8

0 0 1 3 1 14
0 0 0 -4© −9 −34
0 0 0 4 −7 2


R5+R4

−→


1 1 −7 3 −3 6
0 2 2 2 1 8

0 0 1 3 1 14
0 0 0 -4© −9 −34
0 0 0 0 -16© −32


There is no pivot in the right-hand side column, therefore system is consistent. Since the
number of variables is equal to the number of nonzero rows the system has one solution.

Back substitution:
x1+ x2−7x3+3x4− 3x5 = 6 x1 − 1− 0 + 3 · 4− 3 · 2 = 6 −→ x1 = 1

2x2+2x3+2x4+ x5 = 8 2x2 + 0 + 2 · 4 + 2 = 8 −→ x2 = −1
x3+3x4+ x5 = 14 x3 + 3 · 4 + 2 = 14 −→ x3 = 0
−4x4− 9x5 = −34 −4x4 − 9 · 2 = −34 −→ x4 = 4

−16x5 = −32 −→ x5 = 2

The solution is:
x1
x2
x3
x4
x5

 =


1
−1

0
4
2



Verify that the solution is correct:

R1: 13 · 1 + 13 · 5 + 13 · 6− 13 · 10 = 26 3

R2: − 1 · 1− 5− 2 · 6 + 2 · 10 = 2 3

R3: 2 · 1 + 5 · 5− 3 · 6− 10 = −1 3

R4: 5 · 1 + 7 · 5− 3 · 6− 2 · 10 = 2 3

R5: 13 · 1 + 13 · 5 + 13 · 6− 13 · 10 = 26 3
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1 SYSTEM OF LINEAR EQUATIONS

Example 2

Solve the following system using Gaussian elimination.

x1 − 2x2 +2x3 − x4 = 1
x1 − 2x2 +3x3 + 2x4 −x5 = 5
x1 +5x3 −x5 = 6

3x1 − 6x2 +6x3 − 3x4 = 3
2x2 +3x3 + x4 −x5 = 4


1 −2 2 −1 0 1
1 −2 3 2 −1 5
1 0 5 0 −1 6
3 −6 6 −3 0 3
0 2 3 1 −1 4


R2−R1

R3−R1

R4−3R1

−→


1 −2 2 −1 0 1
0 0 1 3 −1 4
0 2 3 1 −1 5
0 0 0 0 0 0
0 2 3 1 −1 4


R2↔R3

R4↔R5

−→

−→


1 −2 2 −1 0 1

0 2 3 1 −1 5
0 0 1 3 −1 4
0 2 3 1 −1 4
0 0 0 0 0 0

R4−R2

−→



1 −2 2 −1 0 1

0 2 3 1 −1 5

0 0 1 3 −1 4

0 0 0 0 0 -1©
0 0 0 0 0 0



This matrix corresponds to the equations:

x1 − 2x2 +2x3 − x4 = 1
2x2 +3x3 + x4 − x5 = 5

x3 + 3x4 − x5 = 4
0x1 + 0x2 +0x3 + 0x4 +0x5 = −1

There are no values such that 0x1 + 0x2 + 0x3 + 0x4 + 0x5 = −1.
The system has no solution.
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1 SYSTEM OF LINEAR EQUATIONS

Example 3

Solve the following system using Gaussian elimination.

2x1 + x2 − x3 + 8x5 = 1
−2x1 + 2x2 +2x3 + 2x4 − 4x5 = 0

3x2 + x3 + 2x4 + 5x5 = 1
3x1 + 6x2 + 3x4 +17x5 = 3
2x1 + x2 − x3 +11x5 = 1


2 1 −1 0 8 1
−2 2 2 2 −4 0

0 3 1 2 5 1
3 6 0 3 17 3
2 1 −1 0 11 1


R2+R1

2R4 − 3R1

R5−R1

−→


2 1 −1 0 8 1
0 3 1 2 4 1
0 3 1 2 5 1
0 9 3 6 10 3
0 0 0 0 3 0

R3−R2

R4−3R2

R5/3

−→

−→


2 1 −1 0 8 1
0 3 1 2 4 1
0 0 0 0 1 0
0 0 0 0 −2 0
0 0 0 0 1 0

R4 + 2R3

R4−R3

−→


2 1 −1 0 8 1
0 3 1 2 4 1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0


There is no pivot in the right-hand side column, therefore system is consistent. Since the
number of variables is less than the number of nonzero rows the system has infinitely many
solutions.

The variables in the pivotal columns x1, x2 and x5 are called basic variables. The other
variables x3 and x4 are called free variables.

Back substitution:

2x1 + x2− x3 + 8x5 = 1 x1+ 1/3− 2t/3− s/3− s + 8·0 = 1 −→ x1 = 1/3 + t/3 + 2s/3

3x2 + x3 + 2x4 + 4x5 = 1 3x2 + s + 2t + 4·0 = 1 −→ x2 = 1/3− 2t/3− s/3

−→ x3 = s
−→ x4 = t

x5 = 0 −→ x5 = 0 t, s ∈ R

The solution is:
x1
x2
x3
x4
x5

=


1/3
1/3

0
0
0

+ t·


1/3
−2/3

0
1
0

+ s·


2/3
−1/3

1
0
0



Verify that the solution is correct:

R1: 2(1/3 + t/3 + 2s/3) + (1/3− 2t/3− s/3)− s + 0 = 1 3

R2:− 2(1/3 + t/3 + 2s/3) + 2(1/3− 2t/3− s/3) + 2s + 2t = 0 3

R3: 0 + 3(1/3− 2t/3− s/3) + s + 2t + 0 = 1 3

R4: 3(1/3 + t/3 + 2s/3) + 6(1/3− 2t/3− s/3) + 3t + 0 = 3 3

R5: 2(1/3 + t/3 + 2s/3) + (1/3− 2t/3− s/3)− s + 0 = 1 3

9



1 SYSTEM OF LINEAR EQUATIONS

1.2 Gauss-Jordan elimination

Definition

A matrix is said to be in reduced row echelon form if it is in row echelon form, all pivots
are 1 and all entries not only below but also above them are zero.

Gauss-Jordan elimination is sequence of elementary row operations performed on the
augmented matrix of a linear system to convert the matrix into reduced row echelon
form.



a11 a12 · · · a17 b1
a21 a22 · · · a27 b2
...

...
. . .

...
...

a61 a26 · · · a67 b6


el. row oper.−−−−−−−−−→−→ · · · −→


1 0 ∗ 0 ∗ ∗ 0 ∗
0 1 ∗ 0 ∗ ∗ 0 ∗
0 0 0 1 ∗ ∗ 0 ∗
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 0


augmented matrix of a linear system reduced row echelon form

∗ any number
basic (pivot) columns

There is a unique matrix in row echelon form associated with any matrix A. It is usually
denoted by rref(A).

Example 4

Solve the following system using Gauss-Jordan elimination.

x1 + 2x2 − 3x3 + 3x4 + 3x5 = 0
2x1 + 4x2 − 3x3 + 10x4 +13x5 = 8
−3x1 − 6x2 + 15x3 + x4 + 7x5 = 20

 1 2 −3 3 3 0
2 4 −3 10 13 8
−3 −6 15 1 7 20

R2−2R1

R3+3R1

−→

 1 2 −3 3 3 0
0 0 3 4 7 8
0 0 6 10 16 20


R3−2R2

−→

 1 2 −3 3 3 0
0 0 3 4 7 8
0 0 0 2 2 4

2R1−3R3

R2−2R3

At this point, the augmented matrix is in echelon form. The following additional row
operations are performed to transform the matrix to the reduced echelon form.

−→

 2 4 −6 0 0 −12
0 0 3 0 3 0
0 0 0 2 2 4

R1 + 2R2

−→

 2 4 0 0 6 −12
0 0 3 0 3 0
0 0 0 2 2 4

R1/2

R2/3

R3/2

−→

 1 2 0 0 3 −6
0 0 1 0 1 0
0 0 0 1 1 2


The solution is:

x1
x2
x3
x4
x5

=


−6

0
0
2
0

+ t·


−3

0
−1
−1

1

+ s·


−2

1
0
0
0



Verify that the solution is correct:

R1: − 6− 3t− 2s + 2s + 3t + 3(2− t) + 3t = 0 3

R2: 2(−6− 3t− 2s) + 4s + 3t + 10(2− t) + 13t = 8 3

R3: − 3(−6− 3t− 2s)− 6s− 15t + 2− t + 7t = 20 3
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1 SYSTEM OF LINEAR EQUATIONS

1.3 Homogeneous and nonhomogeneous systems

Definition

A system of linear equations with the right-hand side consisting entirely of zeros is said
to be homogeneous.

a11x1 + a12x2 + · · ·+ a1nxn = 0
a21x1 + a22x2 + · · ·+ a2nxn = 0

...
am1x1 + am2x2 + · · ·+ amnxn = 0

A system with at least one nonzero number on the right-hand side is called nonhomo-
geneous.

Regardless of the value of the coefficients a homogeneous system has always at least one
solution, the trivial solution consisting of all zeros.
There is a close relation between the solution of a nonhomogeneous system and the solu-
tion of the associated homogeneous one.

Example 5

Solve the following systems.

x1 + 4x2 + 6x3 + 33x4 + 2x5 = 27
x1 + 4x2 + 8x3 + 43x4 + 2x5 = 31
x1 + 4x2 + 2x3 + 13x4 + x5 = 12

x1 + 4x2 + 6x3 + 33x4 + 2x5 = 0
x1 + 4x2 + 8x3 + 43x4 + 2x5 = 0
x1 + 4x2 + 2x3 + 13x4 + x5 = 0

a nonhomogeneous system the associated homogenous system

The elimination can be performed on both systems at the same time. 1 4 6 33 2 27 0
1 4 8 43 2 31 0
1 4 2 13 1 12 0

R2−R1

R3−R1

−→

 1 4 6 33 2 27 0

0 0 2 10 0 4 0
0 0 −4 −20 −1 −15 0

R1 − 3R2

R3 + 2R2

−→

−→

 1 4 0 3 2 15 0

0 0 2 10 0 4 0
0 0 0 0 -1© −7 0

R1 + 2R3

R2/2

R3/−1

−→

 1 4 0 3 0 1 0
0 0 1 5 0 2 0
0 0 0 0 1 7 0


x1 + 4x2 + 3x4 = 1 x1 = 1− 3− 4st

x2 = s
x3 + 5x4 = 2 x3 = 2− 5t

x4 = t
x5 = 7 x5 = 7

x1
x2
x3
x4
x5

 =


1
0
2
0
7

+ t


−3

0
−5

1
0

+ s


−4

1
0
0
0



x1 + 4x2 + 3x4 = 0 x1 = −3t− 4s
x2 = s

x3 + 5x4 = 0 x3 = −5t
x4 = t

x5 = 0 x5 = 0
x1
x2
x3
x4
x5

 = t


−3

0
−5

1
0

+ s


−4

1
0
0
0


A general solution of the nonhomogeneous system is the sum of a so called particular solution
(the green part) and the solution of the associated homogeneous system (the blue part).

11



2 MATRIX ALGEBRA

2 Matrix algebra

Definition

An array of numbers (real or complex) is called a matrix.

A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

...
am1 am2 am3 · · · amn


The number aij in the ith row and jth column is called an entry of the matrix. It can be
also denoted (A)ij.
The size of the matrix is denoted m× n (pronounced ”m by n”).
The entries a11, a22, a33, . . . make up the main diagonal.

Definition

A matrix is called
• a square matrix when it has the same number of rows and columns.
• a rectangular matrix when it doesn’t have the same number of rows and columns.
• a zero matrix when all of its entries are zero. Zero matrices are denoted O.

For example: 1 5 7
1 4 3
3 7 8


3×3 square matrix
blue main diagonal

 2 4 5 1 1
0 4 1 4 0
1 0 5 2 4


3×5 rectangular matrix
blue main diagonal


2 4 5 1
0 4 1 4
1 0 5 2
1 1 5 1
1 4 0 3
1 2 0 2


6×4 rectangular matrix
blue main diagonal

O=

 0 0
0 0
0 0


3×2 zero matrix

Definition

A square matrix is called
• diagonal if all entries below and above the main diagonal are zero.
• an identity matrix when it has ones on the main diagonal and zeros everywhere else.

Identity matrices are denoted I.
• lower triangular if all the entries above the main diagonal are zero.
• upper triangular if all the entries below the main diagonal are zero.
• symetric if every entry aij is equal the entry aji.

For example:
2 0 0 0
0 −3 0 0
0 0 1/8 0
0 0 0 5


a diagonal

matrix


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


an identity

matrix


1 0 0 0
0 4 0 0
1 0 0 0
0 −1 2/7 8


a lower

triangular
matrix


1 0 1 4
0 6 1 1
0 0 2 3
0 0 0 1


an upper

triangular
matrix


2 0 5 3
0 −4 0 1
5 0 0 8
3 1 8 7


a symetric

matrix
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2 MATRIX ALGEBRA

2.1 Matrix operation

Definition

The product of a number k and a matrix A is defined to be the matrix obtained by
multiplying each entry of A by k.

(k ·A)ij = k · aij

For example:

3

 1 1
2 0
3 8

 =

 3 3
6 0
9 24


Definition

The sum of two matrices Am×n and Bm×n is defined to be the m×n matrix obtained by
adding corresponding entries.

(A + B)ij = aij + bij

For example:  1 1
2 0
3 8

+

 1 0
3 5
3 4

 =

 2 1
5 5
6 12


Definition

The product of two matrices Am×p and Bp×n is defined to be the m×n matrix whose
ijth entry is obtained by “multiplying” ith row of A with jth column of B as follows:

(A · B)ij =
p

∑
k=1

aik · bkj

For example:

a)

(
1 2 3

0 7 0

) 4
4
4

 =

(
1·4 + 2·4 + 3·4
0·4 + 7·4 + 0·4

)
=

(
24

28

)

b)

(
1 2 3

0 7 0

) 4 5
4 6
4 7

 =

(
24 38

38 42

)

Definition

The transpose of Am×n is defined to be the n×m matrix AT obtained by flipping A over
its main diagonal.

(AT)ij = aji

For example: (
1 3 7
2 8 0

)T
=

 1 2
3 8
7 0
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2 MATRIX ALGEBRA

For matrices A, B and C of the right size, the following properties hold.

A + B = B + A
A + (B + C) = (A + B) + C

k · (A + B) = k ·A + k · B

A · B 6= B ·A
A · (B · C) = (A · B) · C
(A + B) · C = A · C + B · C
C · (A + B) = C ·A + C · B

Because A · (B · C) = (A · B) · C, there is no need to write parentheses and we can simply
write A · B · C.

Definition

For any positive integer k the kth power of the square matrix A is defined as the product
of k matrices A.

Ak = A ·A ·A . . . A︸ ︷︷ ︸
k times

A matrix to the zeroth power is defined to be the identity matrix of the same size A0 = I.

Exercise 6

a) Find 3·A + 2·BT for the following matrices.

i) A =

(
3 5
7 −1

)
B =

(
1 10
4 −2

)
ii) A =

(
2 −2 1
0 7 −1

)
B =

 1 0
−1 −2

7 3


b) Evaluate the following:

i)

 2 1 2 −6 −5
0 1 −4 1 0
3 1 1 1 −3




2
1
0
1
1

 ii)


3 2
0 6
5 1
4 −1
1 2


(

2
1

)

c) Find A·B and B·A for the following matrices.

i) A=

(
−2 6

1 −3

)
B=

(
1 2 0
2 4 1

)
ii) A=( 1 7 3 ) B=

 2
0
1



iii) A=

(
−2 6

1 −3

)
B=

(
1 2
2 4

)
iv) A=

(
2 1
4 2

)
B=

(
2 3
−4 −6

)

d) Find A3 for the following matrices.

i) A=

(
−2 6

1 −3

)
ii) A=

 1 2 0
1 0 3
1 2 1
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2 MATRIX ALGEBRA

2.2 Matrix Inverse

Definition

A square matrix A is called invertible if there exists a matrix A−1 such that

A ·A−1 = A−1 ·A = I

The matrix A−1 is called the inverse of A.
A square matrix which is not invertible is called singular.

Although not all matrices are invertible, when an inverse exists, it is unique.
Gauss-Jordan elimination can be used to compute the inverse.

Example 7

Find the inverse of the matrix A =

 1 1 1
5 6 2
2 5 1

 .

( A | I ) =

 1 1 1 1 0 0
5 6 2 0 1 0
2 5 1 0 0 1

R2−5R1

R3−2R1

−→

 1 1 1 1 0 0
0 1 −3 −5 1 0
0 3 −1 −32 0 1


R3−3R2

−→

−→

 1 1 1 1 0 0
0 1 −3 −5 1 0
0 0 8 13 −3 1

8R1−R3

8R2+3R3 −→

 8 8 0 −5 3 −1
0 8 0 −1 −1 3
0 0 8 13 −3 1

R1−R2

−→

−→

 8 0 0 −4 4 −4
0 8 0 −1 −1 3
0 0 8 13 −3 1

R1/8

R2/8

R3/8

−→

 1 0 0 −4/8 4/8 −4/8

0 1 0 −1/8 −1/8 3/8

0 0 1 13/8 −3/8 1/8

 = ( I | A−1 )

A−1 = 1/8

 −4 4 −4
−1 −1 3
13 −3 1


Verify that the solution is correct:

A ·A−1 =

 1 1 1
5 6 2
2 5 1

 1/8

 −4 4 −4
−1 −1 3
13 −3 1

 = 1/8

 8 0 0
0 8 0
0 0 8

 =

 1 0 0
0 1 0
0 0 1



A−1 ·A = 1/8

 −4 4 −4
−1 −1 3
13 −3 1

 1 1 1
5 6 2
2 5 1

 = 1/8

 8 0 0
0 8 0
0 0 8

 =

 1 0 0
0 1 0
0 0 1
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Example 8

Find the inverse of the matrix A =

 1 1 1
5 6 2
3 4 0



( A | I ) =

 1 1 1 1 0 0
5 6 2 0 1 0
3 4 0 0 0 1

R2−5R1

R3−3R1

−→

 1 1 1 1 0 0
0 1 −3 −5 1 0
0 1 −3 −3 0 1


R3−R2

−→

−→

 1 1 1 1 0 0
0 1 −3 −5 1 0
0 0 0 2 −1 1


The matrix A cannot be reduced to an identity matrix because a zero row emerged during
elimination. Therefore A is singular.

A n×n matrix is invertible if and only if its rank is n.

For two invertible matrices A and B, the following properties hold.

• (A−1)−1 = A

• The product A · B is also invertible.

• (A · B)−1 = B−1 ·A−1 (the reverse order law for inversion)

Exercise 9

Find the inverse of the following matrices.

a)

 6 1 2
0 3 −1
4 2 1

 b)

 0 1 −1
2 5 8
2 7 6

 c)

 −4 18 10
−1 −3 0
−1 17 10



d)

(
3 5
−1 −3

)
e)


0 0 1 0
4 0 1 0
0 −3 0 1
1 0 0 −1

 f)


1 0 0 0 0
2 1 0 0 0
0 2 1 0 0
0 0 2 1 0
0 0 0 2 1
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2.3 Matrix equations

A system of linear equations can be written as a matrix equation.

x1 + x2 + x3 = 3
5x1 + 6x2 + 2x3 = 3
2x1 + 5x2 + x3 = 2

 1 1 1
5 6 2
2 5 1

 x1
x2
x3

 =

 3
3
2


A · x = b

The matrix equations A · X = B and X ·A = B can be solved if the matrix A is invertible:

A · X = B

A−1 ·A · X = A−1 · B
A−1 ·A︸ ︷︷ ︸

I

·X = A−1 · B

I · X = A−1 · B
X = A−1 · B

X ·A = B

X ·A ·A−1 = B ·A−1

X ·A ·A−1︸ ︷︷ ︸
I

= B ·A−1

X · I = B ·A−1

X = B ·A−1

Example 10

Solve the following matrix equation A · x = b. 1 1 1
5 6 2
2 5 1

 x1
x2
x3

 =

 3
3
2



THe matrix A has the inverse A−1 = 1/8

 −4 4 −4
−1 −1 3
13 −3 1

, see page 15.

A · x = b

A−1 ·A · x = A−1 · b
x = A−1 · b

x = A−1 · b = 1/8

 −4 4 −4
−1 −1 3
13 −3 1

 3
3
2

 = 1/8

−8
0

32

 =

−1
0
4


Verify that the solution is correct:

A · x =

 1 1 1
5 6 2
2 5 1

−1
0
4

 =

 3
3
2

 = b 3
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Example 11

Solve the following matrix equation for the unknown matrix X.

F ·G · X = B F =

(
0 1
1 2

)
G =

(
2 −5
−1 4

)
B =

(
4 1
6 3

)

( F | I )=
(

0 1 1 0
1 2 0 1

)
R2↔R1

−→
(

1 2 0 1
0 1 1 0

)
R1−2R2−→

(
1 0 −2 1
0 1 1 0

)
= ( I | F−1 )

( G | I )=
(

2 −5 1 0
−1 4 0 1

)
2R2+R1

−→
(

2 −5 1 0
0 3 1 2

)
3R1+ 5R2−→

(
6 0 8 10
0 3 1 2

)
R1/6

R2/3
−→

−→
(

1 0 4/3 5/3

0 1 1/3 2/3

)
= ( I | G−1 )

The matrices F and G are invertible. Their inverses are F−1=

(−2 1
1 0

)
and G−1= 1/3

(
4 5
1 2

)
.

F ·G · X = B

F−1 · F ·G · X = F−1· B
G · X = F−1· B

G−1 ·G · X = G−1· F−1· B
X = G−1· F−1· B

X = 1/3

(
4 5
1 2

)(
−2 1

1 0

)(
4 1
6 3

)
=

= 1/3

(−3 4
0 1

)(
4 1
6 3

)
=

(
4 3
2 1

)

Verify that the solution is correct:

F ·G ·X =

(
0 1
1 2

)(
2 −5
−1 4

)(
4 3
2 1

)
=

(
−1 4

0 3

)(
4 3
2 1

)
=

(
4 1
6 3

)
= B 3

Example 12

Solve the following matrix equation for the unknown matrix X.

a) F · X ·G = B F =

(
0 −1
2 5

)
G =

(
2 −7
−1 4

)
B =

(
−1 8
−1 12

)

b) F ·G · X = B F =

 1 0 1
2 2 3
5 −1 2

 G =

 1 0 0
−3 1 0

5 0 2

 B =

 6 2
9 10

19 2


c) A · X = b

d) A · X = c

e) A · X = D

A =

 1 2 4
1 3 5
1 3 6

 b =

 4
4
1

 c =

 10
10
20

 D =

 0 1
0 1
0 1
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2.4 Elementary matrices

Definition

Elementary matrices are square matrices that can be obtained from the identity matrix
by performing one single elementary row operation.

For every elementary row operation there is a elementary matrix such that multiplying by
it from the left performs the operation.
For example:
• Swapping two rows:

P =

 0 1 0
1 0 0
0 0 1

  1 0 0
0 0 1
0 1 0

  0 0 1
1 0 0
0 1 0

 · · ·

• Multiplying a row by a nonzero number α:

E11 =

 α 0 0
0 1 0
0 0 1

 E22 =

 1 0 0
0 α 0
0 0 1

 E33 =

 1 0 0
0 1 0
0 0 α


• Adding a multiple of one row to another row.

E13 =

 1 0 0
0 1 0
α 0 1

 E12 =

 1 0 0
α 1 0
0 0 1

 E23 =

 1 0 0
0 1 0
0 α 1

 . . .

Definition

A matrix that can be obtained from the identity matrix by swapping two or more rows
is called a permutation matrix.

Exercise 13

a) What matrix will swap the first and the third row?
· · · ·
· · · ·
· · · ·
· · · ·




1 2 0
0 2 1
−1 2 3

4 2 1

 =


−1 2 3

0 2 1
1 2 0
4 2 1


b) What matrix will multiply the third row by five?

· · · ·
· · · ·
· · · ·
· · · ·




1 2 0
0 2 1
−1 2 3

4 2 1

 =


1 2 0
0 2 1

−10 10 15
4 2 1


c) What matrix will add the first row to the third one?

· · · ·
· · · ·
· · · ·
· · · ·




1 2 0
0 2 1
−1 2 3

4 2 1

 =


1 2 0
0 2 1
0 4 3
4 2 1



19
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2.5 The LU factorization

Some square matrices A can be decomposed into two matrices, a lower triangular matrix L
and an upper triangular matrix U such that A = L·U. Such a decomposition is called the
LU factorization of A. It may be found by performing Gaussian elimination. This will be
demonstrated on the following example.

Example 14

Find the LU factors the matrix A =

 1 1 1
5 6 9
3 5 13

 .

The elimination performed on the matrix A produces the matrix U. 1 1 1
5 6 9
3 5 13

R2− 5R1 −→

 1 1 1
0 1 4
3 5 13


R3− 3R1

−→

 1 1 1
0 1 4
0 2 10


R3− 2R2

−→

 1 1 1
0 1 4
0 0 2


A −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ U

Each one of these row operations can be carried out as multiplication by an elementary
matrix. 1 0 0

0 1 0
0 −2 1

 1 0 0
0 1 0
−3 0 1

 1 0 0
−5 1 0

0 0 1

 1 1 1
5 6 9
3 5 13

 =

 1 1 1
0 1 4
0 0 2


E23 · E13 · E12 · A = U

E23 ·E13 ·E12 ·A = U

E13 ·E12 ·A = E−1
23 ·U

E12 ·A = E−1
13 ·E

−1
23 ·U

A = E−1
12 ·E

−1
13 ·E

−1
23︸ ︷︷ ︸

L

·U

L =

 1 0 0
5 1 0
0 0 1

 1 0 0
0 1 0
3 0 1

 1 0 0
0 1 0
0 2 1

=

 1 0 0
5 1 0
3 2 1


E−1

12 · E−1
13 · E−1

23

Thus  1 1 1
5 6 9
3 5 13

 =

 1 0 0
5 1 0
3 2 1

 1 1 1
0 1 4
0 0 2


A = L · U

The matrix L has ones on its diagonal. Entries below the diagonal are called multipliers.
The multiplier `ij is the number used in the elimination to annihilate the ij position: Ri−`ijRj

`ij =
entry to eliminate in row i

pivot in row j
L =

 1 0 0
`21 1 0
`31 `32 1

 =

 1 0 0
5 1 0
3 2 1


A square matrix A can be decomposed into L·U if there was no need to exchange rows
during the elimination. Otherwise the factorization has the form P·A = L·U, where P is a
permutation matrix.
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LU factorization is a very useful tool for solving multiple systems with the same coefficient
matrix and different right-hand sides.

Example 15

Use LU factorization to solve

 1 1 1
5 6 9
3 5 13

 x1
x2
x3

 =

 0
1
4


Once the LU factors of A are known (see example on page 20), it is easy to solve A·x = b.

A · x = b
L ·U · x = b

L · (U · x︸︷︷︸
y

) = b

Insted of solving A·x = b, we solve two triangular systems L·y = b and U·x = y:

First

 1 0 0
5 1 0
3 2 1

 ·
 y1

y2
y3

=

 0
1
4


L · y = b

and then

 1 1 1
0 1 4
0 0 2

 ·
 x1

x2
x3

=

 ··
·


U · x = y

Forward substitution to get y:

y1 = 0
y2 = 1− 5y1 = 1
y3 = 4− 3y1 − 2y2 = 2

 1 1 1
0 1 4
0 0 2

 ·
 x1

x2
x3

 =

 0
1
2


Backward substitution to get x.

x1 = 0− x2 − x3 = 2
x2 = 1− 4x3 = −3
x3 = 2/2 = 1

Exercise 16

Use LU factorization to solve the systems below.

a)

 1 1 1
5 6 9
3 5 13

 x1
x2
x3

 =

 5
27
15



b)

 5 −15 1
−20 44 −3

10 50 −4

 x1
x2
x3

 =

−15
40
90



c)

 5 −15 1
−20 44 −3

10 50 −4

 x1
x2
x3

 =

 0
0
0



d)

 5 −15 1
−20 44 −3

10 50 −4

 x1
x2
x3

 =

−9
21
56
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2 MATRIX ALGEBRA

2.6 Determinants

Definition

The determinant of a square 1×1 matrix A = (a11) is defined to be the number a11.

The determinant of a square matrix A=

 a11 · · · a1n
... . . . ...

an1 · · · ann

 is defined to be the number

det (A) =
n

∑
k=1

a1k(−1)1+k M1k

where Mij is the determinant of the (n−1)×(n−1) matrix that results from A by remov-
ing its ith row and its jth column.
The number Cij = (−1)i+jMij is called the cofactor associated with the position ij.
The determinant of the matrix A is denoted det(A), det A, or |A|.

Example 17

Compute the determinant of the matrix a) A =

(
1 2
7 4

)
b) A =

 2 4 1
1 5 2
3 0 0


a) det (A) =

∣∣∣∣ 1 2
7 4

∣∣∣∣ = 1 · 4− 7 · 2 = 4− 14 = −10

b) det (A) =

∣∣∣∣∣∣
2 4 1
1 5 2
3 0 0

∣∣∣∣∣∣ = 2 · (−1)2 ·
∣∣∣∣ 5 2

0 0

∣∣∣∣+ 4 · (−1)3 ·
∣∣∣∣ 1 3

2 0

∣∣∣∣+ 1 · (−1)4 ·
∣∣∣∣ 1 5

3 0

∣∣∣∣
= 2 · 0− 4 · (−6) + 1 · (−15) = 9

The rule of Sarrus for the determinant of a 3×3 matrix A =

 a b c
d e f
g h i


a b
d e
g h

= aei + b f g + cdh −ceg− a f h− bdidet (A) =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣
Example 18

Compute the determinant of the matrix A =

 2 4 1
1 5 2
3 0 0

.

det (A) =

∣∣∣∣∣∣
2 4 1
1 5 2
3 0 0

∣∣∣∣∣∣
2 4
1 5
3 0

= 2 · 5 · 0 + 4 · 2 · 3 + 1 · 1 · 0 −1 · 5 · 3− 2 · 2 · 0− 4 · 1 · 0 = 9
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The determinant of the matrix An×n can be expressed by the folowing so called Laplace
expansions or cofactor expansions.

det (A) = ai1Ci1 + ai2Ci2 + · · ·+ ainCin expansion along the ith row
det (A) = a1jC1j + anjC2j + · · ·+ anjCnj expansion along the jth column

Example 19

Compute the determinant of the matrix a) A=

 2 4 1
1 5 2
3 0 0

 b) A=

 1 1 1
5 6 2
3 4 0


a) Expansion along the second row:

det (A) = 1·(−1)3·
∣∣∣∣ 4 1

0 0

∣∣∣∣+ 5·(−1)4·
∣∣∣∣ 2 1

3 0

∣∣∣∣+ 2·(−1)5·
∣∣∣∣ 2 4

3 0

∣∣∣∣= −0+5·(−3)− 2·(−12) = 9

b) Expansion along the third column:

det (A) = 1·(−1)4·
∣∣∣∣ 5 6

3 4

∣∣∣∣+ 2·(−1)5·
∣∣∣∣ 1 1

3 4

∣∣∣∣+ 0·(−1)6·
∣∣∣∣ 1 1

5 6

∣∣∣∣= 1·2− 2·1 + 0·1 = 0

Matrix A is singular see page 16.

A matrix A is singular if and only if det(A) = 0.

Example 20

Compute the determinant of the matrix A =


1 −2 1 3
4 0 1 0
−1 0 2 3

1 −2 1 1

.

To minimize the effort expand along a row (or a column) which contains the most zeros.
Expansion along the second column:

det (A) = (−2)·(−1)3·

∣∣∣∣∣∣
4 1 0
−1 2 3

1 1 1

∣∣∣∣∣∣+ 0 + 0 + (−2)·(−1)6·

∣∣∣∣∣∣
1 1 3
4 1 0
−1 2 3

∣∣∣∣∣∣ = 2 · 0− 2 · 18 = −36

Exercise 21

Compute the determinant of the following matrices.

a) A =

 5 0 1
−1 3 4

1 0 2

 b) B =


4 1 1 0
3 1 −2 1
0 0 2 1
2 0 3 1

 c) C =


0 1 0 5
−3 0 2 0

0 1 0 1
2 −2 0 3
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3 Vector spaces Rn

Definition

The vector space Rn consist of all vectors

u1
u2...
un

 with n real entries.

Any two vectors can be added together and any vector can be multiplied by a real num-
ber. u1

u2...
un

+

v1
v2...
vn

 =

 u1 + v1
u2 + v2...
un + vn

 c ·

u1
u2...
un

 =

 c · u1
c · u2...
c · un



The vector

 0
0
...
0

 from Rn consisting of n zeros is called the zero vector. It is denoted o.

(
4
−1

)

(
−1

2

) (
−3

6

)

(
4
6

)(
8
5

)

(
0
0

) (
0.1
78

)
R2  0

5
0

  0
0
0



 2
1
1


 0

0√
6



 4
3
6


 6

3
3



 4
−2

6


 40

0.32
π

R3


1
2
3
0




2
2
0
1

 
0
0
0
0


1
−1

1
2




3
4
3
1




3
−3

3
6



R4

R5, R6, . . .

Although we will only study the vector spaces Rn, there are other sets of objects that also
form vector spaces.

v

u

u + v
w

3w

Arrow2

c

a b

b + c

2a

Arrow3
10

20

20

x2+5x−5

2x2+5

−x2+5x−10

−3x2+15x−30

Polynom2

Polynom3, Polynom4, . . .

and many others. . .

All their objects (vectors) have some things in common. They can be added together, mul-
tiplied by a number, there is a “zero” vector among them, etc.

There is a correspondence between some vector spaces. For ex-
ample Arrows2 ∼ R2, Arrows3 ∼ R3. There is no correspond-
ing ”arrow” space for R4, R5, . . .

-1

5

6

-1-3 4

v

u

u + v
w

3w

Arrows2 ∼ R2

24



3 VECTOR SPACES Rn

3.1 Linear combination and span

Definition

We say that the vector w is a linear combination of the vectors v1, v2, . . . , vr if there are
numbers c1, c2, . . . cr such that

w = c1v1 + c2v2 + · · ·+ crvr.

Definition

For a set of vectors S = {v1, v2, . . . , vr} the span of S is the set of all linear combinations
of vectors v1, v2, . . . , vr. It is denoted span(S).

The vector

 3
3
4

 is a linear combination of the vectors

 0
0
1

,

 1
1
1

,

 2
2
2

 since

 3
3
4

 = 1 ·

 0
0
1

+ 1 ·

 1
1
1

+ 1 ·

 2
2
2

 or

 3
3
4

 = 1 ·

 0
0
1

+ 3 ·

 1
1
1

+ 0 ·

 2
2
2


This can be writtten as a matrix equation: 0 1 2

0 1 2
1 1 2

 1
1
1

 =

 3
3
4

 or

 0 1 2
0 1 2
1 1 2

 1
3
0

 =

 3
3
4


Example 22

Decide whether the vector w is a linear combination of the vectors v1, v2, v3;

w=


0
3
0
0

, v1=


2
0
0
0

, v2=


1
0
2
1

, v3=


0
0
5
1

.

We are looking for three numbers c1, c2, c3 such that

c1 ·


2
0
0
0

+ c2 ·


1
0
2
1

+ c3 ·


0
0
5
1

 =


0
3
0
0


This can be written as the matrix equation below and then solved by elimination.

2 1 0
0 0 0
0 2 5
0 1 1


 c1

c2
c3

 =


0
3
0
0




2 1 0 0
0 0 0 3
0 2 5 0
0 1 1 0

R2↔ R4 −→


2 1 0 0
0 1 1 0
0 2 5 0
0 0 0 3


There is no solution, therefore the vector w is not a linear combination of the vectors v1,
v2, v3. In other words, the vector w is not in the span of {v1, v2, v3}.
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Example 23

Decide whether the vector w is a linear combination of the vectors v1, v2, v3;

w=


2
0
0
6

, v1=


2
0
4
2

, v2=


1
1
2
1

, v3=


2
0
5
1

.

We are looking for three numbers c1, c2, c3 such that

c1 ·


2
0
4
2

+ c2 ·


1
1
2
1

+ c3 ·


2
0
5
1

 =


2
0
0
6


This can be written as the matrix equation

2 1 2
0 1 0
4 2 5
2 1 1


 c1

c2
c3

 =


2
0
0
6


and solved by elimination.

2 1 2 2
0 1 0 0
4 2 5 0
2 1 1 6

R3 − 2R1

R4−R1

−→


2 1 2 2
0 1 0 0
0 0 1 −4
0 0 −1 4


R4+R3

−→


2 1 2 2
0 1 0 0
0 0 1 −4
0 0 0 0


Back substitution gives the solution c1 = 5, c2 = 0, c3 = −4. Therefore the vector w is a
linear combination of the vectors v1, v2, v3. In other words, the vector w is in the span of
{v1, v2, v3}.

w = 5v1 + 0v2 − 4v3.

Exercise 24

a) Decide whether the vector w is a linear combination of the vectors v1, v2, v3;

w =


3
4
3
−4

, v1 =


2
1
0
−1

, v2 =


1
1
−1
−1

, v3 =


0
2
−4
−2

.

b) Decide whether the vector w is in the span of {v1, v2, v3};

w =


5
1
2
3

, v1 =


2
1
0
−1

, v2 =


1
1
−1
−1

, v3 =


0
2
−4
−2

.
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3.2 Linear independence

Definition

The sequence of vectors 〈v1, v2, . . . , vr〉 is called linearly independent if the only solu-
tion to the equation

c1v1 + c2v2 + · · ·+ crvr = o
is c1 = c2 = · · · = cr = 0.
If there is a solution with at least one nonzero ci, the sequence of vectors is called linearly
dependent.

Notice that if vector v4 is a linear combination of vectors v1, v2, v3: v4= c1v1 + c2v2 + c3v3

then vectors 〈v1, v2, v3, v4〉 are lineary dependent since c1v1 + c2v2 + c3v3 − v4 = o.

Example 25

Decide whether the sequence of vectors 〈v1, v2, v3, v4〉 is linearly independent.

v1=


2
4
0
2

, v2=


1
0
3
5

, v3=


3
4
3
7

, v4=


4
4
6

12

.


2 1 3 4 0
4 0 4 4 0
0 3 3 6 0
2 5 7 12 0

R2−2R1

R4−R1

−→


2 1 1 3 0
0 -2© -2 -4 0
0 3 3 6 0
0 4 4 8 0


2R1+R2

2R3 + 3R2

R4+2R2

−→


4 0 4 4 0
0 -2© -2 -4 0
0 0 0 0 0
0 0 0 0 0


R1/4

R2/−2
−→


1 0 1 1 0
0 1 1 2 0
0 0 0 0 0
0 0 0 0 0



The system has infinitely many solutions

c1
c2
c3
c4

 = t ·

−1
−2

0
1

+ s ·

−1
−1

1
0


Therefore the sequence 〈v1, v2, v3, v4〉 is lineary dependent.

Forexample: for t = 1, s = 0: − v1 − 2v2 + 0v3 + v4 = o,

for t = 1, s = 1: − 2v1 − 3v2 + v3 + 0v4 = o, . . .

Example 26

Decide whether the sequence of vectors 〈v1, v2, v3, v4〉 is linearly independent.

v1=


1
0
1
1

, v2=


0
3
0
0

, v3=


1
1
0
1

, v4=


1
1
1
0

.


1 0 1 1 0
0 3 1 1 0
1 0 0 1 0
1 0 1 0 0

R3−R1

R4−R1

−→


1 0 1 1 0
0 3 1 1 0
0 0 −1 0 0
0 0 0 −1 0

R3/−1

R4/−1

−→


1 0 1 1 0
0 3 1 1 0
0 0 1 0 0
0 0 0 1 0


The system has only the trivial solution: 0v1 + 0v2 + 0v3 + 0v4 = o.
Therefore the sequence 〈v1, v2, v3, v4〉 is lineary independent.
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3 VECTOR SPACES Rn

3.3 Metric structure of Rn

Definition

For two vectors u =


u1
u2
...

un

 and v =


v1
v2
...

vn

 of Rn their dot product (or the standard

inner product) is defined to be the number

u · v = u1v1 + u2v2 + · · ·+ unvn

The dot product of the vectors u=

(
1
2
3

)
and v=

(
0
−5

1

)
is

u · v = 1 · 0 + 2 · (−5) + 3 · 1 = −7

Definition

For the vector u=


u1
u2
...

un

 of Rn the magnitude of vector (or the euclidean vector norm)

is defined to be the number ‖u‖ =
√

u · u=
√

u2
1 + u2

2 + · · ·+ u2
n

The magnitude of the vector u=

 3
1
1
4

 is ‖u‖ =
√

32 + 12 + 42 =
√

26 .
= 5.09

Definition

For two nonzero vectors u and v of Rn the angle between them is defined to be the
number ϕ ∈ 〈0, π〉 such that

cos ϕ =
u · v
‖u‖‖v‖

Find the angle of the vectors u =

 5
−4

3

 and v =

 2
1
3

.

cos ϕ =
u · v
‖u‖‖v‖ =

5 · 2 + (−4) · 1 + 3 · 3√
52 + (−4)2 + 32

√
22 + 12 + 32

=
15√

50
√

14
.
= 0.5669

ϕ = 0.96 rad ϕ = 55.46◦

Definition

Two vectors of Rn are said to be orthogonal or perpendicular (to each other) if their dot
product equals zero.

u · v = 0
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3 VECTOR SPACES Rn

Exercise 27

a) Find the dot product of the vectors u =

 2
−3

2

 and v =

 1
−4

3

.

b) Find the magnitude of the vector u=

 1
−2

5

.

c) Find the angle of the vectors u and v.

i) u=


4
−1

5
2

 v=


1
3
−2

2

 ii) u=

 1
2
2

 v=

−2
3
−2



d) Decide, whether the vectors u and v are perpendicular.

i) u=

 1
−1

3

 v=

 3
4
0

 ii) u=

 1
2
2

 v=

−2
3
−2


e) Fill in the missing numbers, so that the vectors u and v are perpendicular.

i) u=

 4
0
2

 v=

−5
7
∗


ii) u=


1
−2

0
4

 v=


∗
4
2
1
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4 EUCLIDEAN SPACE E3

4 Euclidean space E3

Definition

A Cartesian coordinate system (in 3D) consists of an ordered triplet of orientated lines
(the axes) pair-wise perpendicular that go through a common point (the origin) and are
pair-wise perpendicular; and a single unit of length common for all three axes.
The axes are denoted x, y, z. The xy-plane, yz-plane, xz-plane are called coordinate
planes. The system can be either right-handed or left-handed.

y

z

x

right-handed

x

z

y

left-handed

In 3D space equipped with a Cartesian coordinate system, every point A is uniquely de-
termined by an ordered triplet of numbers [a1, a2, a3] as shown in the picture below. The
numbers are called coordinates of the point A. We write this as A=[a1, a2, a3].

z

yx

a1 a2

a3

AO

From now on to conserve space we will write vectors from the space R3 differently. In-

stead of u=

(
u1
u2
u3

)
we will write u=(u1, u2, u3) (numbers “laying down” and divided by

commas).

Definition

Euclidean space E3 contains two sets of object. The set of all points [a1, a2, a3] and the
set of all vectors (u1, u2, u3) from the vector space R3 equipped with the dot product.
Both sets are “tied up” together, we can “add” point to a vector to get another point

A + u = [a1 + u1, a2 + u2, a3 + u3].

For every (ordered) pair of points A = [a1, a2, a3] and B = [b1, b2, b3] there is a unique
vector

AB = (b1 − a1, b2 − a2, b3 − a3).

The distance of two points A and B is the magnitude of the vector AB.

Example 28

For the points A=[2,−1, 5], B=[4, 1, 0] find the vector AB.

AB=(4− 2, 1− (−1), 0− 5) = (2, 2,−5)
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Recall that two vectors are perpendicular whenever their dot product is zero.
Vectors perpendicular to the vector u=(1, 0, 2) are for example (−2, 0, 1), (4, 5,−2) . . . ,
vectors perpendicular to the vector v=(3, 4, 1) are for example (1,−1, 1), (0, 1,−4) . . . .
Is there a way to find a vector that will be perpendicular to both of them?

Definition

For two vectors u=(u1, u2, u3) and v=(v1, v2, v3) of R3 their cross product is defined to
be the vector

u× v=(u2v3−u3v2, u3v1−u1v3, u1v2−u2v1)

The cross product u× v is perpendicular to the vector u and to the vector v.

The cross product can also be expressed as the formal determinant

u× v =

∣∣∣∣∣∣
i j k

u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ = i ·
∣∣∣∣u2 u3

v2 v3

∣∣∣∣− j ·
∣∣∣∣u1 u3

v1 v3

∣∣∣∣+ k ·
∣∣∣∣u1 u2

v1 v2

∣∣∣∣
where i=(1, 0, 0), j=(0, 1, 0), k=(0, 0, 1).

Example 29

Find the cross product of the vectors u=(1, 0, 2) and v=(3, 4, 1). Check that the cross
product is perpendicular to the vector u and to the vector v.

u× v =

∣∣∣∣∣∣
i j k
1 0 2
3 4 1

∣∣∣∣∣∣ =
(∣∣∣∣ 0 2

4 1

∣∣∣∣ , −
∣∣∣∣ 1 2

3 1

∣∣∣∣ ,
∣∣∣∣ 1 0

3 4

∣∣∣∣) = (−8, 5, 4)

To check whether they are perpendicular we calculate their dot product:
(1, 0, 2)·(−8, 5, 4) = −8+0+8=0 Vectors u and u× v are perpendicular.
(3, 4, 1)·(−8, 5, 4)=−24+20+4=0 Vectors v and u× v are perpendicular.

Exercise 30

a) Find the cross product of the vectors u = (4,−1, 2) and v = (2, 0, 5). Check that
the cross product is perpendicular to the vector u and to the vector v.

b) For the point A = [3, 4, 1] and the vector u = (2,−2, 1) find the coordinates of the
following points:

i) A + u, ii) A + 2u, iii) A + 3u, iv) A− u.
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4.1 Line in E3

Definition

A line through a point A=[a1, a2, a3] in the direction of a vector u=(u1, u2, u3) is defined
to be a set of all points X satisfying equation

X = A + tu, t ∈ R

The equations x = a1 + tu1

p : y = a2 + tu2

z = a3 + tu3, t ∈ R. A

X

p

u

are called the parametric equations of the line.

For example the parametric equations of the line passing through the point A= [3, 4, 1] in
the direction of the vector u=(2,−2, 1) are:

x = 3 + 2t
p : y = 4− 2t

z = 1 + t, t ∈ R
Exercise 31

a) Find the parametric equations for a line p which passes through the point
A=[1, 4,−1] in the direction of the vector u = (3, 0, 2).

i) Find the coordinates of any four points the line p passes through.

ii) Find the missing coordinates of points [−2, ∗, ∗], [∗, ∗, 7] and [∗, 6, ∗] so they
lie on the line p.

iii) Find out whether the line p passes through the point A[4, 4, 4], B[10, 4, 5].

b) Find the parametric equations for the line p in the pictures below.

i)
pz

y
x

12

4

3
A

B
ii)

p

z

y
x

3
7

iii)

1 2

p
z

y
x A

c) Find the coordinates of the point M and the point N lying on the line p and also in
the xz-plane and yz-plane, respectively.

p

z

y
x

NM
x = 8− 2t

p : y = −9 + 3t
z = 5

d) Decide whether there is a line which passes through all three points A=[1, 1, 1],

B=[4, 3, 5] and C=[7, 5, 9]. If so, write its parametric equations.
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4.2 Line – line intersection

Definition

If there is a point lying on two lines it is called their point of intersection.

Example 32

Find the point of intersection of the lines p and q (if there is any).

p :
x = 8− 3t
y = 1− t
z = 3 + 2t

q :
x = 3 + s
y = s
z = 8 + s

Let’s assume there is a point of intersection P = [p1, p2, p3]. Since P lies on both lines, its
coordinates must satisfy both equations for some t and some s.

p1 = 8− 3t p1 = 3 + s 8− 3t = 3 + s
p2 = 1− t p2 = s 1− t = s
p3 = 3 + 2t p3 = 8 + s 3 + 2t = 8 + s

We get three linear equations in two unknowns.

−3t− s = −5
−t− s = −1
2t− s = 5

 −3 −1 −5
0 2 −2
0 −5 5

 −→
 −3 −1 −5

0 2 −2
0 0 0


The system has one solution t=2 a s=−1. The lines intersect at one point.

p1 = 8− 3t = 8− 3 · 2 = 2 p1 = 3 + s = 3 + (−1) = 2
p2 = 1− t = 1− 2 = −1 p2 = s = −1
p3 = 3 + 2t = 3 + 2 · 2 = 7 p3 = 8 + s = 8− 1 = 7

Their point of intersection is P=[2,−1, 7].

There are four cases of line-line intersection:

A
B

p

v

q

p ∩ q = {P} P

u

intersecting lines

A
B

p

v

q
u

p 6 | q

skew lines

A
Bp

v

q

p ‖ q

u

parallel lines
A

B

p = q
v

u

identical lines
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Example 33
Decide whether the lines p, q are identical, parallel, skewed or intersecting.

x = 2 + t x = −3 + r
a) p : y = 3 + t q : y = 6− r

z = 5 + 2t z = 7− r

x = 1 + t x = 2− r
b) p : y = 1− 2t q : y = 2 + 3r

z = −2 + 3t z = −5− 4r

x = 1 + t x = 2 + 2r
c) p : y = 1− 2t q : y = 2− 4r

z = −2 + 3t z = −5 + 6r

x = 1 + t x = 2− 3r
d) p : y = 1− 2t q : y = −1 + 6r

z = −2 + 3t z = 1− 9r

a) 2 + t = −3 + r
3 + t = 6− r

5 + 2t = 7− r

t− r = −5
t + r = 3

2t + r = 2

 1 −1 −5
1 1 3
2 1 2

−→
 1 −1 −5

0 1 4
0 0 0


The system has one solution r=4, t=−1. The lines intersect in one point [1, 2, 3].

b) 1 + t = 2− r
1− 2t = 2 + 3r
−2 + 3t = −5− 4r

t + r = 1
−2t− 3r = 1

3t + 4r = −3

 1 1 1
−2 −3 1

3 4 −3

−→
 1 1 1

0 −1 3
0 0 −9


The system has no solution. The lines don’t intersect. Thus they are either parallel or skew. Since
their direction vectors (1,−2, 3) and (−1, 3,−4) don’t have same direction, the lines are skewed.

c) 1 + t = 2 + 2r
1− 2t = 2− 4r
−2 + 3t = −5 + 6r

t− 2r = 1
−2t + 4r = 1

3t− 6r = −3

 1 −2 1
−2 4 1

3 −6 −3

−→
 1 −2 1

0 0 3
0 0 0


The system has no solution. The lines don’t intersect. Therefore they are either parallel or skewed.
Since their direction vectors (1,−2, 3) and (2,−4, 6) have the same direction, the lines are parallel.

d) 1 + t = 2− 3r
1− 2t =−1 + 6r
−2 + 3t = 1− 9r

t + 3r = 1
−2t− 6r =−2

3t + 9r = 3

 1 3 1
−2 −6 −2

3 9 3

−→
 1 3 1

0 0 0
0 0 0


The system has infitely many solutions. The lines have infinitely many common points. Therefore
they are identical.

Exercise 34
Decide whether the lines p, q are identical, parallel, skewed or intersecting.

x = 1 + 2t x = −2− s
a) p : y = 7− 6t q : y = 10 + 3s

z = −2 + 8t z = 1− 4s

x = 7 + t x = 5 + 6s
b) p : y = −11 + 3t q : y = 3− 2s

z = −10 + 3t z = 10 + s

x = 1 + t x = 2− s
c) p : y = 1− 2t q : y = −1 + s

z = 2 + 2t z = 1− s

x = 10 + t x = 14− 2s
d) p : y = −7− t q : y = 3 + 2s

z = 3 + 3t z = 15− 6s
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4.3 Plane in E3

Definition

A plane passing through the point A = [a1, a2, a3] in the direction of two independent
vectors u = (u1, u2, u3) and v = (v1, v2, v3) is defined to be the set of all points X such
that

X = A + tu + sv

for some real numbers t, s.

v
A X

u
α

The vectors u and v are called the direction vectors of the plane α.

The equations x = a1 + tu1 + sv1

α : y = a2 + tu2 + sv2

z = a3 + tu3 + sv3 t, s ∈ R.

are called the parametric equations of the plane.
A vector is said to lie in the plane if it is a linear combination of u and v.

For the example parametric equations of the plane α which passes through the point
A=[1, 2,−2] in the direction of u=(3,−1,−1) and v=(1, 0,−2) are

x = 1 + 3t + s
y = 2− t
z = −2− t− 2s t, s ∈ R.

To eliminate the parametrs t and s we multiply first equation by two, the second by five
and add all of the equations together.

2x = 2 + 6t + 2s
5y = 10− 5t

z = −2− t− 2s

2x + 5y + z = 10 + 0t + 0s

The result is 2x + 5y + z− 10 = 0

Definition

The equation α : ax + by + cz + d = 0

is called the general equation of the plane. The numbers a, b, c must not all be zero.

Definition

A vector n is said to be perpendicular to a plane if it is
perpendicular to all vectors that lie in the plane. Any such
vector is called a normal vector of the plane. α

n

A normal vector of the plane α : ax + by + cz + d = 0 is the vector (a, b, c).

A normal vector of the plane α : 2x + 5y + 1z− 10=0 is the vector n=(2, 5, 1).
Notice that the vector n is perpendicular to vector u and vector v.
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Example 35

Check whether the point A=[1, 2,−2] lies in the plane α : 2x + 5y + z− 10 = 0.

2 · 1 + 5 · 2 + 1 · (−2)− 10 = 0. Yes, it does.

Example 36

Find a general equation of the plane that goes through the point A=[1, 2,−2] in direction
of vectors u=(3,−1,−1) and v=(1, 0,−2).

The equation we are looking for is in the form ax + by + cz + d = 0, where (a, b, c) is a
normal vector. A normal vector is one that is perpendicular to u and v, so their vector
product u× v is a normal vector.

(a, b, c) = u× v =

(∣∣∣∣−1 −1
0 −2

∣∣∣∣ ,−
∣∣∣∣ 3 −1

1 −2

∣∣∣∣ ,
∣∣∣∣ 3 −1

1 0

∣∣∣∣) = (2, 5, 1)

We know that a = 2, b = 5 and c = 1. To find the number d we use the fact that the point A
lies in the plane. Therefore

2 · (1) + 5 · (2) + (−2) + d = 0
d = −10

A general equation of the plane is 2x + 5y + z− 10 = 0.

Example 37

Do the vectors (1, 5, 9), (6, 4, 3) lie in the plane α : x− 3y + 2z + 2 = 0?
Write a few other vectors which lie in the plane.

α

n

v

v

w
u

Every vector which lies in a plane is perpendicular to every normal vector of the plane.
This can be tested by their dot product.

(1, 5, 9) · (1,−3, 2) 6=0 the vector (1, 5, 9) is not in the plane α

(6, 4, 3) · (1,−3, 2) =0 the vector (6, 4, 3) lies in the plane α

The vectors (7, 1,−2), (9, 5, 3), (1, 1, 1), (2, 0,−1) also lie in the plane α.
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Exercise 38

a) The points [∗, 0, 0], [0, 0, ∗] lie in the plane α : 2x + 5y + z− 10 = 0. Find their
missing coordinates.

b) Find a general equation of the plane with a normal vector (−3, 1, 4) and passing
through point [1, 2, 1].

c) Find a general equation of the plane that goes through the point A = [−2, 0, 5] in
the direction of the vectors u = (4, 2,−1) a v = (−1, 1, 2). Check whether points
D=[5, 5, 5] and E=[6, 6, 6] lie in the plane.

d) Find a general equation of the plane that goes through the points A = [3, 1, 5],
B = [4, 2, 7] and C = [5, 3, 9]. Find the coordinates of any four points lying in the
plane.

e) Find a general equation of the plane α perpendicular to the x-axis and passing
through the point Q=[1,−2, 3].

f) Find the coordinates of points X, Y and Z lying on the axes
and in the plane α : 4x + 6y + z− 12 = 0 and the coordinates
of any point D lying in the plane α and the xy-plane.

Z

X

z

yx

Y
α

D

g) Find a general equation of the plane α in the pictures below.

a)

3

z

yx

1

5

α

b)

5

2
z

yx

α

α ‖ y c) z

yx

7
α

α ‖ xy-plane
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4.4 Plane – plane intersection

Example 39

Find the line of intersection between the two planes α, β (if there is any).

α : x− y + 4z + 2 = 0 β : 2x− y + 5z− 2 = 0

Let’s assume that P=[p1, p2, p3] is some common point of both planes. Since P lies on both
planes, its coordinates must satisfy both equations.

p1 − p2 + 4p3 + 2 = 0
2p1 − p2 + 5p3 − 2 = 0

We get a system of two equations with three unknowns.(
1 −1 4 −2
2 −1 5 2

)
−→
(

1 −1 4 −2
0 1 −3 6

) p1 = 4− t
p2 = 6 + 3t
p3 = t

The system has infinitely many solutions. The two planes have infinitely many common
points. They all lie on the line p.

p :
x = 4− t
y = 6 + 3t
z = t

The line p goes through the point [4, 6, 0] in the direction of the vector (−1, 3, 1). Verify that
both the point and the vector lie in both of the planes.

Note: Taking different steps during elimination might get you a different looking solution,
for example

p :
x = 6− 2s
y = 6s
z = −2 + 2s

These are also equations of the line p.

Example 40

Do the points [1, 1, 1], [1, 0, 4], [2, 1, 0] lie in the plane α? Do they lie in the plane β?

α : x + 3y + z− 5 = 0 β : 2x + 6y + 2z− 10 = 0

All three points lie in both planes.
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There are three possible cases of plane–plane intersection:

α ≡ β

identical planes

α

β

parallel planes
contain no common points

α

β

p
intersecting planes

Example 41

Decide whether the planes α and β are identical, intersecting or parallel.

a)
α : 2x+6y+4z+10=0
β : 3x+9y+6z+15 = 0

b)
α : 2x−6y+4z+10=0
β : 3x− 9y+6z+10=0

c)
α : 2x+6y+4z−10=0
β : 2x+7y+6z−15=0

1. method: Compare their equations

a) If the equation of the plane α is a multiple of the equation of the plane β, the planes
are identical.

b) If the equation of the plane α is a multiple of the equation of the plane β except for
the coeficient d, the planes are parallel.

c) If the equation of the plane α is not a multiple of the equation of the plane β, the
planes are intersecting.

2. method: Find common points

a)
(

2 6 4 −10
3 9 6 −15

)
−→
(

1 3 2 −5
0 0 0 0

) x = −5− 2t− 3s
α ≡ β : y = s

z = t

There are many solutions. Since the system has two free variables, the planes are
identical. The solution corresponds to the parametric equations of the planes.

b)
(

2 −6 4 −10
3 −9 6 −10

)
−→
(

1 −3 2 −5
0 0 0 −25

)
There is no solution, therefore there are no common points. The planes are parallel.

c)
(

2 6 4 10
2 7 6 15

)
−→
(

1 3 2 5
0 1 2 5

) x = −10 + 4t
p : y = 5− 2t

z = t

There are many solutions. They all lie on a line, the planes are therefore intersecting.
The solution corresponds to the parametric equations of this line.

Exercise 42

Decide whether the planes α and β are identical, intersecting or parallel.

a)
α : x− y + 2z + 2 = 0
β : 3x−3y+6z + 6 = 0

b)
α : x− y + 2z + 2 = 0
β : 5x−5y+10z +3 = 0

c)
α : x− y + 2z + 2 = 0
β : x− 3y + 4z− 4 = 0
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4.5 Plane – line intersection

There are three possible cases of plane-line intersection.

$

a ∩ $= {P}

P

a

a $

a ∈ $
a

$

a ‖ $

Example 43

Decide whether the given line cuts through, is embeded in or parallel with the plane $.

$ : 3x− 2y− z− 13 = 0

a :
x = 2 + 2t
y = 1− t
z = 5t

b :
x = 4 + t
y = 3t
z = −1− 3t

c :
x = 2 + 2t
y = 1 + 4t
z = 1− 2t

1. method: Compare the direction vector of the line and normal vector of the plane
a) (2,−1, 5) · (3,−2,−1) 6= 0 Vector (2,−1, 5) does not lie in the plane.

The line cuts through the plane at one single point.

b) (1, 3,−3) · (3,−2,−1) = 0 Vector (2,−1, 5) lies in the plane
Does the point [4, 0,−1] of the line lie in the plane? 3 · 4− 2 · 0 + 1− 13 = 0 Yes.
The line is embeded in the plane.

c) (2, 4,−2) · (3,−2,−1) = 0 Vector (2,−1, 5) lies in the plane
Does the point [2, 1, 1] of the line lie in the plane? 3 · 2− 2 · 2− 1− 13 6= 0 No.
The line is parallel with the plane.

2. method: Find common points

a)
p1 = 2 + 2t
p2 = 1− t
p3 = 5t

3p1−2p2−p3−13 = 0
3(2+2t)− 2(1−t)− 5t−13 = 0

t = 3

The system has one solution, therefore the line cuts through the plane at one single
point P=[8,−2, 15].

b)
p1 = 4 + t
p2 = 3t
p3 = −1− 3t

3p1−2p2−p3−13 = 0
3(4+t)−2(3t)−(−1−3t)−13 = 0

0 = 0

The system has many solutions, therefore the line and plane share many common
points. The line is embeded in the plane.

c)
p1 = 2 + 2t
p2 = 1 + 4t
p3 = 1− 2t

3p1−2p2−p3−13 = 0
3(2+2t)− 2(1+4t)−(1−2t)−13 = 0

−10 6= 0

The system has no solution, therefore the line and plane do not intersect. The line is
parallel with the plane.
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Exercise 44

a) Decide whether the given line cuts through, is embeded in or parallel with the
plane $.

$ : 3x− y + z + 2 = 0

a :
x = 5− t
y = −1 + 2t
z = −2 + t

b :
x = t
y = 1 + 4t
z = −1 + t

c :
x = 4 + t
y = 2 + t
z = 7− 2t

b) Decide whether the line a cuts through, is embeded or is parallel with the plane $.

a :
x = −t− 2
y = −2t + 4
z = −2t− 1

$ :
x = −2 + 3s + r
y = 4 + 2s + 2r
z = 1 + 2r
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5 Computation of the derivative

5.1 Introduction to Calculus

We begin with a discussion of the two related problems that motivated the invention of
calculus. Let us look at the relation between the speedometer and the odometer familiar to
every driver. The first one measures velocity v and the other one the distance s travelled.

The relation between v and s.
Can we find v if we know s? How? And vice versa, if we have the record of the velocity
over the time, can we compute the distance traveled? In other words, can we recover
missing information of odometer form the complete recors of speedometer?

The problem of finding velocity from a record of distance is called differentiation, finding
distance traveled from the velocity is called integration.

Example 45

Constant velocity
Suppose we travel with fixed velocity v = 90 (km per hour). Then s incerases at this
constant rate. After an hour the distance is s = 90 km, after three hours s = 270 and
after t hours s = 90t. The distance incerases linearly with time and its graph is a line
with slope 90. The graph of velocity is a horizontal line.

This simple relation of v, s, t needs just algebra:

s = v · t

1 2 3 4

100

velocity v(t)

time t

Area = 270

1 2 3

90
180
270

distance s(t)

time t (hours)

s = 270

slope = 270/3 = 90

Constant velocity and linearly increasing distance

Conversely, if s increases linearly, v is constant. The division by time gives the slope. At
any point, the ratio s/t is 90. Geometrically, the velocity is the slope of the distance graph

slope =
change in distance

change in time
=

v · t
t

= v

Now, we compute s from v. Starting from the graph of v, we discover the graph of s = v · t.
The graph of s is given by the area under the velocity graph. When v is constant, we got
a rectangle with height v and width t, hence its area is v times t. Finding area is called
integration.
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• The slope of distance graph gives the velocity v.

• The area under the velocity graph gives the distance s.

Functions

Definition

The function is a rule that assigns one member of the range to each member of the
domain. Equivalently, we say that a function is a set of ordered pairs (t, f (t)) with no t
appearing more than once.
The domain of the function f is the set D of inputs, D ⊂ R.
The range of the function f is the set I of outputs, I ⊂ R. We also say that I is image of
D, I = f (D).

The number v(t), we say “v of t” is the value of the function v at the time t.
The time t is the input to the function, the velocity v(t) at that time is the output.
The input t is mapped to the output s(t), which changes as t changes. All calculus is about
the rate of change. This rate was our function v(t).
In some way, functions are instructions telling us how to find s at time t. The instructions
can be given in the form of

• explicit formula s = f (t), e.g. s = 2t,

• implicit equation f (x, y) = 0, e.g. x + y− 1 = 0,

• parametric equations x = x(t), y = y(t), with t ∈ I ⊂ R, describing coordinates of
the point in the plane at the time t, e.g.

x(t) = 3 + 3t,
y(t) = 3− 3t, t ∈ 〈0, 1〉.

• table

t 0 1 2 3 4 5 6

s(t) 0 90 180 270 180 90 0

• graph, etc.

In practice, the number f (t) is produced from the number t by reading a graph or display of
a measuring device, plugging into a formula, solving an equation, or running a computer
program.

There are two central questions leading in opposite directions that calculus was invented
to solve:
1) If the velocity is changing, how can we compute the distance travelled?
2) If the graph s(t) of the distance is not a straight line, what is its slope?
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Example 46

Suppose that s(t) = t2 is the distance traveled by time t. Find the velocity v(t).

The distance graph of s(t) is a parabola.
Velocity is distance divided by time, but what happens when the speed is changing? Di-
viding s = 100 by t = 10 gives v = 10, this is the average velocity over the first ten seconds.
But how do we find the instantaneous velocity without looking at the speedometer at the
exact instant when t = 10?
The problem is that the distance is not distributed evenly. As the car goes faster, the graph
of t2 gets steeper and more distance is covered in every following second. We can try an
approximation. The average velocity between t = 10 and t = 11 may be a good approxi-
mation to the speed at the moment t = 10 and averages are easy to find:

average v =
change in s
change in t

=
s(11)− s(10))

11− 10
=

121− 100
1

= 21.

The car covered 21 meters in that second and its average speed was 21 m/s. Since it was
still gaining speed, the velocity at the beginning t = 10 was below 21.
What is the average geometrically? It is a slope. But not the slope of the curve. The average
velocity is the slope of a straight line joining two point on the curve. Thus, we pretend the
velocity is constant and we are back in the previous easy case.

The graph of quadratic distance function s(t) = t2 and its velocity.

We can also find the average over a smaller time interval. The way to find v(10) is to
proceed with reducing the time interval.

Finding the slope between points that are closer and closer on the curve is the key to
the differentail calculus. The “limit” is the slope at a single point.

We can compute the average velocity between t = 10 and any later time t = 10 + h by the
same algebra:

vav =
(10 + h)2 − 102

h
=

100 + 20h + h2 − 100
h

= 20 + h.
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For the distance function s(t) = t2 we have the velocity function v(t) = 2t. This is the key
computation of calculus: we compute the distance at t + h, subtract the distance at t and
divide by h:

vav =
s(t + h)− s(t)

h
=

(t + h)2 − t2

h
=

t2 + 2th + h2 − t2

h
= 2t + h.

As h approaches zero, the average velocity for the distance function s(t) = t2 approaches
v = 2t.

5.2 Definition of the derivative

Definition

The derivative f ′(x) or d f /dx is

f ′(x) = lim
∆x→0

f (x + ∆x)− f (x)
∆x

The derivative might not exist. The averages ∆ f /∆t might not approach a limit (the same one
for the time running forwards and backwards). In that case f ′(t) is not defined.

Example 47

Calculate the instant velocity for the distance function f (t) = t2:

∆ f
∆t

=
f (t + ∆t)− f (t)

∆t
=

t2 + 2t∆t + (∆t)2 − t2

∆t
=

2t∆t + (∆t)2

∆t
= 2t + ∆t

Note that we take these steps before ∆t goes to zero. If we set ∆t → 0 too early, we learn
nothing, as the ratio becomes 0/0, an expression which does not have meaning so far. The
theory of limits will later allow us to understand it.
The numbers ∆ f and ∆t must approach zero together, not separately. Then, their ratio
2t + ∆t gives the correct average speed.

Theorem

The derivative of the nth power is given by

(xn)′ = n · xn−1, for all n ∈ R \ {0}

The exception n = 0 is the constant function y = x0 = 1. Its derivative, as we’ve already
discovered, is zero.

Exercise 48

Compute the derivatives:
(

x5
)′

,
(

1
p3

)′
,
(

3√t2
)′

,
(

1
5
√

r9

)′
.
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5.3 The derivatives of operations

A huge number of functions are linear combinations like f (x) = x2 + x or f (x) = x2 − x,
or f (x) = 5x2 or f (x) = x/2. In general also all of it at once: f (x) = 5x2− 1

2 x +
√

3. You’ve
met such linear combinations in detail in the chapter on linear algebra.
If we need to add or subtract or multiply by 5 or divide by 2, we can do the same with the
derivatives.

Theorem

The derivative is linear, i.e., the following holds:

1. (c · f (x))′ = c · f ′(x) for any constant c ∈ R.

2. ( f (x)± g(x))′ = f ′(x)± g′(x).

Example 49

We show the rule for a polynomial, in our case the quadratic function y = 3x2 − 4x + 5,
but the rules allow any combination of f and g.

(3x2 − 4x + 5)′ = 3(x2)′ − 4(x)′ + (5)′ = 3 · (2x)− 4 · 1 + 0 = 6x− 4.

Exercise 50

Compute the derivatives:
(

4x5 − 3
x6

)′
,

(
3√8 · x2 +

10
5
√

x9
− 3
√

4
)′

.

Theorem (Leibniz product rule)

For any differetiable functions f and g the following holds:

( f (x) · g(x))′ = f ′(x) · g(x) + f (x) · g′(x).

Example 51

Compute the derivative of the function y = (x2 + 4x− 6)
√

x

y′ = (x2 + 4x− 6)′
√

x + (x2 + 4x− 6)(
√

x)′ = (2x + 4)
√

x + (x2 + 4x− 6) · 1
2
√

x
.

Theorem (Quotient rule)

For any differetiable functions f and g the following holds:(
f (x)
g(x)

)′
=

f ′(x) · g(x)− f (x) · g′(x)
(g(x))2 .
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Exercise 52

Compute the derivative of

y =
(
√

x− 3)2

x

Theorem (Chain rule)

For any differetiable functions f and g it holds:

( f (g(x)))′ = f ′ (g(x)) · g′(x)

Example 53

If the function u(x) has slope du/dx, determine the slope of the composed function
f (x) = (u(x))2.

The first observation, e.g. with u(x) = x2, gives the function f (x) = x4, for which
(du/dx)2 = (2x)2. On the other hand f ′ = (x4)′ = 4x3. Hence, the derivative of u2 is
not (du/dx)2.
To get the correct answer, we have to start with ∆ f = f (x + ∆x)− f (x):

∆ f = (u(x + ∆x))2 − (u(x))2 = [u(x + ∆x) + u(x)] · [u(x + ∆x)− u(x)]

due to factorization a2 − b2 = (a + b)(a− b). Notice we don’t have (∆u)2. Now we divide
the ∆ f , the change in u2, by ∆x

∆ f
∆x

= [u(x + ∆x) + u(x)] · [u(x + ∆x)− u(x)]
∆x

,

where the second term is just du/dx. Taking the limit we get

f ′(x) = lim
∆x→0

∆ f
∆x

= 2u(x) · du
dx

.

Example 54

Compute the derivative of the function f (x) = (
√

x− 1)2.

In agreement with the previous calculation we get:

f ′(x) = 2 · (
√

x− 1) · 1
2
√

x
= 1− 1√

x
.

Let us check the answer by computing the derivative without the rule. Factorig the square
we get (

√
x− 1)2 = x− 2

√
x + 1. In this form we can compute using the rule for nth power

and confirm the result.
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Exercise 55

Compute the derivative of the composed functions y = (x3− 1)4 and y =
√

8− 4x− 2x2.

5.4 The derivatives of elementary functions

We state now the rules for the derivatives of exponential functions y = ax and logarithmic
functions y = logb(x), where a and b are called base and both a, b ∈ (0, 1) ∪ (1, ∞). For the
same base, the functions y = ax and y = loga(x) are mutually inverse, so it holds

aloga x = x and loga(ax) = x.

The rules for the derivative of the functions y = ex and y = ln(x), with the Euler number
e = 2.71 . . . as a base, are particularly simple.

Theorem

For the exponential function y = ex it holds

(ex)′ = (ex) .

For a general exponential function y = ax a factor should be added. Let us show its value
using the formula of the inverse:

(ax)′ =
(

eln(ax)
)′

=
(

ex·(ln a)
)′

= e(ln a)·x · ((ln a) · x)′ = ax · (ln a)

For the composed function y = eu(x), with an inner function u(x), the chain rule gives:(
eu(x)

)′
=
(

eu(x)
)
· u′(x).

Example 56

Compute the derivative of the functions y = e
√

x and y = 23t+1.(
e
√

x
)′

= e
√

x · 1
2
√

x(
23t+1

)′
= 23t+1 · (ln 2) · 3

Theorem

For the logarithmic function y = ln(x) it holds

(ln(x))′ =
1
x

Similarly as above, for a general logarithmic function y = loga(x) a factor should be added:

(loga x)′ =
(

ln x
ln a

)′
=

1
ln a
· (ln x)′ =

1
ln a
· 1

x

For the composed function y = ln(u(x)), with an inner function u(x), the chain rule gives:

(ln(u(x)))′ =
1

u(x)
· u′(x).
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Example 57

Compute the derivative of the functions y = ln
(

x2 + 4x + 5
)

and y = log2(3x).

(
ln
(

x2 + 4x + 5
))′

=
1

x2 + 4x + 5
· (2x + 4)

(log2(3x))′ =
1

ln 2
· 1

3x
· 3 =

1
x · ln 2

Theorem

For the derivatives of sine and cosine functions holds the following:

(sin(x))′ = cos(x), (cos(x))′ = − sin(x).

We derive the first formula by the standard limit technique:

dy
dx

= lim
h→0

∆y
∆x

= lim
h→0

sin(x + h)− sin(x)
h

.

For this we need the addition formula sin(x + h) = sin x cos h + cos x sin h. Since we are
going to look on what happens for h→ 0, we factor out the sin(x) and cos(x) and get

lim
h→0

∆y
∆x

= sin(x)
(

lim
h→0

cos h− 1
h

)
+ cos(x)

(
lim
h→0

sin h
h

)
.

It is no longer easy to divide by h. We proceed with showing the value of the two limits
without proof, which we provide in the next chapter

lim
h→0

cos h− 1
h

= 0 and lim
h→0

sin h
h

= 1.

Therefore, we get
dy
dx

= sin(x) · 0 + cos(x) · 1 = cos x.

Example 58

Compute the derivatives of y = 4 + sin(2t + 1) and y = tan2(5ω).

We first note that (sin(u(x)))′ = cos(u(x)) · u′(x). Therefore, it holds

(4 + sin(2t + 1))′ = cos(2t + 1) · 2,

We deduce the formula for the derivative of the tangent function from the quotient rule:

(tan(x))′ =
(

sin(x)
cos(x)

)′
=

cos(x) · cos(x)− sin(x)(− sin(x))
cos2(x)

=
1

cos2(x)
.

Therefore, (
tan2(5ω)

)′
= 2 · tan(5ω) · 1

cos2(5ω)
· 5.
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Exercise 59

Compute the derivative of y = cot(2x).

Theorem

For the derivatives of the inverse trigonometric functions holds the following:

(arcsin(x))′ =
1√

1− x2

(arccos(x))′ = − 1√
1− x2

(arctan(x))′ =
1

1 + x2

Example 60

Compute the derivatives of

a) y = arcsin
√

x b) y = arctan
1
x

Keeping in mind the chain rule for the derivative of composed functions, we get:

a)
(
arcsin

(√
x
))′

=
1√

1− (
√

x)2
· 1

2
√

x
=

1
2
√

x
√

1− x
,

b)
(

arctan
(

1
x

))′
=

1
1 + ( 1

x )
2
·
(
−1
x2

)
=
−1

x2 + 1
.

Exercise 61

Compute the derivatives of the following functions:

a) y = 2 · x2 ·
√

x3
+

3√
8x4 − 1

2x3 +

√
2

2
, for x0 = 1

b) MI I(x) = F · (a + x)− q2 ·
a
2
·
(

3
4

a + x
)
− q2 · x ·

x
2

, for x0 = 2

c) y =
tan x

sin(2x)
, for x0 = π

3

d) y = cos(1)− 3 · cos2
(x

3
− π

6

)
, for x0 = 0
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Exercise 62

Compute the derivatives of the following functions with respect to their independent
variables:

a) N(y) =

√
β + x
1− y

, for y0 = 0

b) F(u) =
arcsin(1− 4u)

2
, for u0 = 1

4

c) G(z) = ln
4

2z− 4
− ln 8, for z0 = 3

d) A(t) = A0 + 3e−2αt+t0 , for t0 = 0

e) V(r) =

√
πpr4

8η`
, for r0 = 1

2

5.5 Overview of the necessary formulas

(c · f (x))′ = c · f ′(x), for any c ∈ R,

( f (x)± g(x))′ = f ′(x)± g′(x),

( f (x) · g(x))′ = f ′(x) · g(x) + f (x) · g′(x),

(
f (x)
g(x)

)′
=

f ′(x) · g(x)− f (x) · g′(x)
(g(x))2 ,

( f (g(x)))′ = f ′ (g(x)) · g′(x).

(xn)′ = n · xn−1, for all n ∈ R \ {0},

(ex)′ = (ex) ,

(ln(x))′ =
1
x

,

(sin(x))′ = cos(x),

(cos(x))′ = − sin(x),

(tan(x))′ =
1

cos2(x)
,

(cot(x))′ = − 1
sin2(x)

,

(arcsin(x))′ =
1√

1− x2

(arccos(x))′ = − 1√
1− x2

(arctan(x))′ =
1

1 + x2
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6 Applications of the derivative

6.1 The tangent line as the best linear approximation

If we focus our attention near a single point, on a very short range, a curve looks straight.
Looking through microscope, or zooming in a computer program, the graph becomes
nearly linear. The curve and its tangent line have the same slope at the point of tangency.
A straight line can be determined by its point and slope. That is the situation with the
tangent line:

1. The equation of a line has the form y = kx + q.

2. The number k is the slope of the line, as dy/dx = k.

3. The number q adjusts the line to go through the required point of tangency.

Theorem

The tangent line t to f at the point T = [x0, f (x0)] is given by the formula:

t : y− f (x0) = kt · (x− x0),

where kt = f ′(x0).

Example 63

Consider the function f : y = x3 + x2 − 2x− 1. At the point x0 = −1, the value of f is
y0 = f (−1) = 1, which gives the point of tangency T = [−1, 1]. The slope of f is given
by dy/dx = 3x2 + 2x− 2. At x = −1 the slope is f ′(−1) = 3 · (−1)2 + 2 · (−1)− 2 = −1.
The equation of the tangent line is y− 1 = (−1)(x− (−1)), that is

y = −x.

(a) Graph of the function f : y = x3 + x2 −
2x− 1 and its tangent at x = −1.

(b) The previous situation zoomed to the in-
terval I = 〈−1, 04;−0, 94〉.
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Exercise 64

Write down the equation for the tangent line t to the graph of the following function:

a) y =
1

(2− ex)2

b) y = 2x · cos
(x

2

)
+ 1

c) y = esin( x
2 )

d) y =
√

5− e−4x

e) y = cos
(

3x
1− 2x

)

f) y =
√

1 + 2 ln (x2 + x + 1)

at the point Py, intersection point with the coordinate axis y, i.e. the line x = 0.
Find the slope of t.

Exercise 65

Write down the equations for the tangent lines ti to the graph of the following function:

a) y =
x + 1
x2 + 1

b) y =
√

x3 + 1

c) y =
ln
(
x2 − 3

)
x

d) y = ln
(

x2 − x + 1
)

e) y = 1− ex2+2x−8

f) y = x · arctan(x− 2)

at intersection points Pxi with the coordinate axis x, i.e. the line y = 0.
Find the slopes of ti.

There is another important line, closely connected to the tangent line.

Definition

The line perpendicular to the tangent and to the curve passing through the point of
tangency is called normal line. It is usually denoted by n.

Let us discuss its slope. According to the rule that slopes of perpendicular lines multiply
to give −1, the following holds:

Theorem

If the tangent has slope m, the normal line has slope −1/m.

Example 66

Determine the tangent and normal line to the curve y = x3 − 2 at the point of tangency
[2; 6].
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The slope of the tangent line is

kt = y′(2) =
(

3x2
)∣∣∣

x=2
= 12.

Hence, the point-slope equation of the tangent line is

t : y− 6 = 12(x− 2).

As kn = −1/kt the point-slope equation of the normal line is

n : y− 6 =
−1
12

(x− 2).

6.2 Even better approximation: the Taylor polynomial

In the previous section we defined a linear approximation to estimate values of a function
f at a neighborhood of the point a with known value. It can be used efficiently if

• we know the value f (a)

• we can easily compute the value of the first derivative of f at the point a.

However, this is not always the case. For example, a linear approximation of the Euler
number e .

= 2.71 . . . , i.e. the value of the function y = ex at the point a = 1, is not sufficient
for precise calculations.
We can’t use the tangent line at the point a = 1, as the value of the function and the
derivative is just e.
Hence, we are forced to use the tangent approximation at a = 0, which gives us

e1 ≈ e0 + e0(x− 0) = 1 + x = 2,

which is far from satisfactory.
It is a straightforward idea to approximate the value with a quadratic function, also with
the help of the second derivative, which gives us:

e ≈ e0 + e0(x− 0) +
e0

2!
(x− 0)2 =

(
1 + x +

x2

2

)
x=1

= 2.5.

The higher degree polynomials give us required accuracy:

e ≈
(

1 + x +
x2

2
+

x3

3!

)
x=1

= 2 + 2
3 = 2.6̄,

≈
(

1 + x +
x2

2
+

x3

3!
+

x4

4!

)
x=1

= 2 + 17
24 = 2.7083̄,

≈
(

1 + x +
x2

2
+

x3

3!
+

x4

4!
+

x5

5!

)
x=1

= 2 + 43
60 = 2.716̄,
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Definition

The polynomial of the degree n ∈N of the form

Tn(x) = f (a) +
f ′(a)

1!
(x− a) +

f ′′(a)
2!

(x− a)2 + · · ·+ f (n)(a)
n!

(x− a)n

is called the Taylor polynomial of the order n for the function f centred at the point a.

We can use the Taylor polynomial to approximate the values of f at a neighborhood of a if

• we know the value f (x0),

• we can easily compute the first n derivatives of the function f at the point a.

For the centre at the origin, a = 0, the polynomial is also called Maclaurin polynomial and
denoted by Mn(x).

Find a polynomial that approximates the given function f in the neighbourhood of the
point x ∈ D( f ) with the smallest possible error.

Theorem (Taylor)

Let f be a function with continuous derivatives up to the order n + 1 in some neighbor-
hood N(a) of the point a ∈ D( f ). Then the following holds

f (x) = Tn(x) + Rn+1(x),

on N(a), with the remainder term Rn+1(x) of the form

Rn+1(x) =
f (n+1)(ξ)

(n + 1)!
(x− a)n+1, with ξ ∈ N(a).

From the remainder term we can estimate the error caused by taking Tn(x) instead of f (x).
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6 APPLICATIONS OF THE DERIVATIVE

Example 67

Estimate the error of taking e ≈ T5(1) = 2.716̄.

Using the Taylor theorem, we compute the value of the remainder:

R6(1) =
f (6)(ξ)

6!
(x)6 =

eξ

6!
16 ≤ 2.72

6!
≤ 0.0038 = O(10−3).

The first inequality follows from the fact that ξ ∈ (0, 1) and due to monotonicity of y = ex

we can majorize the error by taking ξ = 1, i.e. f (6)(ξ) = e1. The second inequality results
just from rounding up.
The efficiency of the approximation depends heavily on the magnitude of the factors in the
remainder term. The error is “small” if

• (x− a) is small, i.e. x is close to a,

• n! is large, i.e. the order n is large,

• | f (n+1)(x)| is numerically small in N(a).

However, the form of the remainder term enables us to compute the error, or at least its
order of magnitude.

Example 68

Estimate the value of sin
(

1
2

)
correctly up to 5 decimal places.

We take y = sin(x) as the function for our approximation. To show the importance of
(x − a) being small we compute, for comparison reasons, its Maclaurin polynominal and
Taylor polynomial at a = π

6 .
Let us compute the first five derivatives of sin(x) and their values at a = 0, π

6 . We get:

f (x) = sin(x) f (0) = 0 f (π
6 ) =

1
2

f ′(x) = cos(x) f ′(0) = 1 f ′(π
6 ) =

√
3

2

f ′′(x) = − sin(x) f ′′(0) = 0 f ′′(π
6 ) = −

1
2

f ′′′(x) = − cos(x) f ′′′(0) = −1 f ′′′(π
6 ) = −

√
3

2

f (4)(x) = sin(x) f (4)(0) = 0 f (4)(π
6 ) =

1
2

f (5)(x) = cos(x) f (5)(0) = 1 f (5)(π
6 ) =

√
3

2

Substituting these values into the Maclaurin and Taylor formula we get:

M5(x) = 0 + 1 · x +
0
2!

x2 − 1
3!

x3 +
0
4!

x4 +
1
5!

x5

= x− 1
6

x3 +
1

120
x5.

T5(x) =
1
2
+

√
3

2
·
(

x− π

6

)
− 1

4

(
x− π

6

)2
−
√

3
12

(
x− π

6

)3
+

+
1

48

(
x− π

6

)4
+

√
3

240

(
x− π

6

)5
.
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6 APPLICATIONS OF THE DERIVATIVE

The value of Maclaurin expansion at x = 1
2 is

T5

(
1
2

)
=

1
2
− 1

48
+

1
3840

=
1841
3840

= 0.4794 . . .

and the error, estimated using the formula for the remainder,

R6

(
1
2

)
=
| − sin(ξ)|

(6)!

(
1
2

)6

≤
| sin π

6 |
720

· 1
64

.
= 0.00001085 . . . = O(10−5).

Hence, we have achieved the desired precision. Note that for π
6 > 1

2 the value sin π
6 >

sin(ξ) for any ξ ∈ (0, 1
2) due to the monotonicity of sin(x) on the interval (0, π

6 ).

We proceed with the Taylor formula at x = 1
2 and estimate the error from the remainder:

R6

(
1
2

)
=
| − sin(ξ)|

(6)!

(
1
2
− π

6

)6

≤
1
2

720
·
(

3− π

6

)6

= O(10−9).

It is clear that due to the fact that (x− a) is smaller we obtained much better result (or the
same precision much more quickly).

Exercise 69

Write down the Maclaurin polynomial of the order 4 for the function

a) f : y = x2ex, b) g : y = ex · cos(x).

Exercise 70

Estimate the values of sin(1◦), sin(1), tan(1) and arctan(1) correctly up to 3 decimal
places.

6.3 Minimum and maximum in applications

Definition

We say that the function f has a local maximum at the point x0 ∈ D( f ) if there exists a
punctured neighborhood N(x0) of the point x0 such that

f (x) < f (x0) for all x ∈ N(x0).

Similarly, the function f has a local minimum at the point x0 ∈ D( f ) if

f (x) > f (x0) for all x ∈ N(x0)

How do you identify maximum or minimum?
Typically, the slope is zero. If d f /dx exists, it must be zero. The tangent line is horizontal.
The graph changes from increasing to decreasing. The slope changes from positive to
negative. This turning point of f ′ is called a stationary point.

It is also possible that the graph has a corner, and thus no derivative. These points are
called rough points.
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6 APPLICATIONS OF THE DERIVATIVE

Last but not least we should check the endpoints of the domain.

Theorem (Fermat’s theorem)

If f is differentiable at x0 ∈ (a, b), and f ′(x0) 6= 0, then x0 is not a local extremum of f .

Fermat’s theorem gives us a necessary condition for the existence of a local extremum.
As a contrapositive statement, it allows us to rule out the points, where there is no ex-
tremum. The remaining points are co called critical points, suspected of the existence of
an extremum. They are of the following three types:

a) stationary points, where d f /dx = 0,

Graph of the function y = x2 + 1 with the stationary point x = 0,

b) rough points, where d f /dx does not exist,

Graph of the function y = |x− 1| with the rough point x = 1,

c) endpoints of the domain,

Graph of the function y = 2 +
√

3− x with the endpoint x = 3.

For the most common case of the stationary points there is an easy-to-check sufficient con-
dition for the existence of a local extremum.
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6 APPLICATIONS OF THE DERIVATIVE

Theorem (Second derivative test)

If f ′(x0) = 0 and f ′′(x0) > 0, then the function f has a local minimum at the point x0.

If f ′(x0) = 0 and f ′′(x0) < 0, then the function f has a local maximum at the point x0.

To find a maximum or minimum, we just find critical points of f . We solve the equation
f ′(x) = 0 and then check the rough points, where f ′(x) doesn’t exist, and endpoints. The
idea is clear, but to be honest, that is not where the problem starts.

In reality, the first (and often the hardest) step is to choose the unknown variable, which
should be minimized, and find the function describing its behaviour. We and only we
ourselves decide what will be x and how would f (x) look like. The equation d f /dx = 0
comes out by a standard procedure, often easily with the help of computer. On the other
hand no computer so far is able to analyse the situation and propose the correct form of f .

The heart of this subject is in word problems. The procedure of solving the problem can
be divided into steps:

1. Find (propose) the quantity x to be minimized or maximized.

2. Express the quantity x as a function f (x).

3. Compute f ′(x) and solve f ′(x) = 0.

4. Check all critical points for fmin and fmax.

Example 71

Barrel problem.
The army is looking for a big amount of 500 litre barrels for fuel. Due to the shortage of
the metal plates, you should propose a shape of the barrels (the radius r and the height
h) spending the least of the worthy material.

The volume of the barrel is obtained from the formula for the cylinder

V = πr2h = 500 dm3.

The surface of the cylindrical barrel consists of two circles (the bottom and the top) and the
rectangular body. Its area A is their sum:

A = 2(πr2) + 2πrh.

The function A should be made minimal. However, it depends on the two unknowns r and
h and we need to minimize function of one variable only. The two variables are connected
through the formula for V, which gives us the possibility of expressing the height h in
terms of r. Indeed,

h =
500
πr2 .

In this way we obtain the formula for A as a function of one variable r:

A(r) = 2(πr2) + 2πr
500
πr2 = 2(πr2) +

1000
r

,
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6 APPLICATIONS OF THE DERIVATIVE

with the domain D(A) = (0, ∞).
The rest is pretty standard. To find the minimum of the function A(r) we first compute the
derivative

dA
dr

= 4πr + 1000 · −1
r2

and use the Fermat theorem dA/dr = 0 to compute the stationary points. This equation
has unique solution

r0 =
3

√
1000
4π

.
= 4.301 dm.

We can check that this is the minimum using the second derivative test. Indeed,

d2A
dr2 = 4π +

2000
r3 > 0.

Remark

Notice that h = 2r, which means that height is equal to the diameter of the barrel. This
is another manifestation of a symmetry so often seen in the minimization problems.

Exercise 72

Drainage canal.
The company building a drainage canals should dredge a semicircle thalwegs of radius
2 m. The canals should be concreted into the form of a trapezoid with the bottom parallel
to the surface, see figure below. Find the shape of the trapezoid so that is allows maximal
possible streaming (in that case the trapezoid has maximal area).

Sectional view of the drainage canal is as follows:

Exercise 73

Baywatch.
You are standing near the side of a large wading pool of uniform depth when you see
a child in trouble. You can run at a speed v1 = 7.1 m/s on land and swim at the speed
v2 = 1.6 m/s in the water. Your perpendicular distance from the side of the pool is a, the
child’s perpendicular distance is b, and the distance along the side of the pool between
the closest point to you and the closest point to the child is c (see the figure below).
Without stopping to do any calculus, you instinctively choose the quickest route (shown
in the figure) and save the child. Our purpose is to derive a relation between the angle
θ1 your path makes with the perpendicular to the side of the pool when you’re on land,
and the angle θ2 your path makes with the perpendicular when you’re in the water. To
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6 APPLICATIONS OF THE DERIVATIVE

do this, let x be the distance between the closest point to you at the side of the pool and
the point where you enter the water. Write the total time you run (on land and in the
water) in terms of x and find its minimum.

Exercise 74

Fencing a pasturage.
A rancher needs to fence a rectangular pasturage area next to a straight river, using 1200
m of fencing. The side next to the river will not be fenced, to allow the cattle drinking
and freshening up in the river. Advice the rancher the dimensions of the rectagnle to
maximize the area of the pasturage. What is the maximum area?

Exercise 75

Running a hotel.
A new 120-room hotel to be opened in Prague is setting up its prices. The manager
knows that they will rent all of its rooms if they charge ¤50 per room and for each ¤2
increase per room, three fewer rooms will be rented per night. What rent per room
would maximize the profit per night?

Exercise 76

Cutting a beam.
The strength of a rectangular beam is given by S = ν · w · d2, with width w and depth d.
Find the dimensions of the strongest beam that can be cut from a cylindrical log of larch
wood (ν = 0.35) of radius r = 30 cm.

Exercise 77

Shipping a parcel to the USA.
The U.S. post office will accept a box for shipment only if the sum of the length and girth
(distance around) is at most 274 cm. Find the dimensions of the largest acceptable box
with square front and back.

6.4 Properties of the grahp of an elementary function

Monotonicity

Suppose that d f /dx is positive at a point x0. Then the tangent line slopes upward. There-
fore it is increasing (as a linear function) and the function f (x) itself is also increasing at
the point x0.

Theorem

If f ′(x0) > 0, then the function f is strictly increasing at the point x0.

If f ′(x0) < 0, then the function f is strictly decreasing at the point x0.

This “local” theorem describing behaviour can be easily generalized to “global” open in-
tervals:
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Theorem

If f ′(x0) > 0 for all x ∈ I = (a, b), then the function f is strictly increasing on the interval
I.

If f ′(x0) < 0 for all x ∈ I = (a, b), then the function f is strictly decreasing on the
interval I.

Remark

Note that the preceding theorem cannot be generalized on the union of intervals.

Example 78

Find the intervals of the strict monotonicity of the function

y = x2 − 12 ln(x− 1).

We start with computing the domain. Here, we have only one condition, required by the
definition of the logarithmic function, namely x − 1 > 0. Therefore, the domain is D =
(1, ∞).
We proceed with the first derivative,

y′ = 2x− 12 · 1
x− 1

.

Note that Dy′ = D = (1, ∞), even if the function 2x− 12/(x− 1) has larger domain.
As we need to solve two inequalities, y′ > 0 and y′ < 0, we find the zero points of y′.

y′ = 2x− 12 · 1
x− 1

=
2x(x− 1)− 12

x− 1
=

2x2 − 2x− 12
x− 1

=
2(x + 2)(x− 3)

x− 1
= 0.

This rational expression has three roots, xi = −2, 1, 3, which divide the domain to the
subintervals, where y′ does not change its sign and therefore it will be possible to decide
which inequality is fulfilled on a particular interval.
As the roots x1 = −2, x2 = 1 do not belong to the domain, we have just single root x = 3
and we solve the inequalities by the graphical method on the intervals (1, 3) and (3, ∞) .
The denominator is positive in both cases, so the sign of the numerator decides on the
result:

Intervals of monotonicity.
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6 APPLICATIONS OF THE DERIVATIVE

The function is increasing on the interval (3, ∞) and decreasing on (1, 3).

Intervals of monotonicity.

Example 79

Find intervals of monotonicity and all local extremes of the function

y = 2x3 + 3x2 − 12x + 24.

We start with checking the domain, here it is easy, D = R. We proceed with the first
derivative, y′ = 6x2 + 6x− 12.
We solve both tasks at once. As we need to solve the the equation y′ = 0 and the two
inequalities, y′ > 0 and y′ < 0, we first find the zero points of y′, which divide the domain
to the subintervals, where y′ does not change its sign and therefore it is easy to decide
which inequality is fulfilled on a particular interval.
We rewrite the equation y′ = 0 to the form 6(x + 2)(x − 1) = 0. Hence, the stationary
points are x1 = −2, x2 = 1, we have no rough points and no endpoints. We easily solve
the inequalities by the graphical method:

Intervals of monotonicity.

The function is increasing on the intervals (−∞,−2) and (1, ∞) (however not on their
union!) and decreasing on (−2, 1).
Therefore, there is a local maximum at x = −2 and a local minimum at x = 1. Note that
we don’t even need the second derivative test in this case.
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Graph of the function with marked intervals of monotonicity and local extremes.

Exercise 80

For the given functions:

a) y = x + ln
(

2x2 − x + 1
)

b) y = ln 3√x2 + x

c) y =
ln x

1− ln x

d) y = ln
(

1− x
x + 2

)
e) y =

1
x · ln x

f) y = ln
(

x2
)
− x2

g) y =

√
x− 2
3− x

h) y = arctan
(

x +
1
x

)
i) y = ecos(2x)

j) y = 1 + 2 sin3 x

k) y = (1 + 2 sin x)3

l) y =
√
(x− 1) · (x + 1) · (x + 3)

m) y =
x3

x2 + 4x + 3

n) y =
x2 + 4

x2 − 3x + 4

find the intervals, where the function is increasing (respectively decreasing). Compute
the coordinates of the local maxima and minima.

Convexity as an expression of a curvature of the graph

The curvature of the graph can be also described by the tangent line. If the tangent line
to the graph of the function y = f (x) at the point [x0, f (x0)] is lying below the graph of the
function at some neigborhood of x0, we call the function convex at the point (x0). Similarly,
if the tangent line is lying above the graph, it is concave at the point (x0).
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A function convex at x1 and concave in x2.

These considerations are not convenient for practical calculations, therefore we have the
following easy criterion.

Theorem

If f ′′(x0) > 0, then the function f is convex at the point x0.

If f ′′(x0) < 0, then the function f is concave (convex negative) at the point x0.

The theorem extends very easily to open intervals:

Theorem

If f ′′(x0) > 0 for all x ∈ (a, b), then the function f is convex on the interval (a, b).

If f ′′(x0) < 0 for all x ∈ (a, b), then the function f is concave on the interval (a, b).

The latter theorem

1. geometrically justifies our second derivative test,

2. cannot be generalized on the union of intervals.

Example 81

Find the intervals of the convexity for the function

y = x4 − 4x3.

We start with checking the domain, D = R. Next, the first and second derivative are

y′ = 4x3 − 12x2,
y′′ = 12x2 − 24x.

Similarly as by the monotonicity, we need to solve two inequalities, only here with the
second derivatives, y′′ > 0 and y′′ < 0.
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Again, we first find the zero points of y′′. Factoring out the common multiple 12 we rewrite
the equation y′′ = 0 to the form

12x(x− 2) = 0.

So the stationary points are x1 = 0, x2 = 2, with no rough points and no endpoints. Again,
We easily solve the inequalities by the graphical method:

Intervals of convexity and concavity. The symbol ⊕ denotes the interval, where y′′ > 0,
the symbol 	 denotes y′′ < 0.

Notice that the point x = 0 is not an extremum, even though it holds f ′(0) = 0.

The function y = x4 − 4x3, its intervals of convexity and concavity.

Inflection points

We describe the points on a graph, where the curvature changes of sign. In particular, it is
a point where the function changes from being concave to convex, or vice versa.

Definition

We say that the point x0 ∈ D is the inflection point of the function f , if there exists a
neighborhood Nδ(x0) of the point x0 such that

f ′′(x− ε) · f ′′(x + ε) < 0 for all ε ∈ (0, δ).
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This is not practical criterion that can be efficiently used by the computation. We state such
a criteria in the following theorems.

Theorem (necessary condition for the existence of an inflection point)

If the function f has an inflection point x0, then

f ′′(x0) = 0.

Theorem (sufficient condition for the existence of an inflection point)

If f ′′(x0) = 0 and f ′′′(x0) 6= 0, then the function f has an inflection point x0.

The thoerem can be further precised. At the inflection point x0 the lowest non-zero deriva-
tive is of an odd order.

Example 82

Find all inflection points of the function y = sin(2x).

We compute the second derivative y′′

y′ = cos(2x) · 2,
y′′ = 2(−1) sin(2x) · 2 = (−4) sin(2x)

and set y′′ = 0. We see that the inflection points coincide with the intersection point of y
with the x axis,

xi =
{

0 + k
π

2

∣∣∣ k ∈ Z
}

.

Moreover, if y = sin(2x) is positive, then it is concave, and if y is negative, it is convex.

The intervals of convexity and concavity of the function y = sin(2x).

Exercise 83

For the given functions:
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a) y = ln(x)−
√

x

b) y = ln
(

x2 − 1
)

c) y = ln
(

1√
x

)
− x2

d) y = ln(x− 1) +
x2

2

e) y =

(
1− 1

x

)3

f) y =
√

x2 − 1

g) y =
ex

x

h) y = x4 · ex

i) y =
√

e1−x

j) y = ex2−1

k) y =
2− x2

ex

l) y = (x2 − 2) · ex−1

m) y = sin(x) · ex

n) y = e
2

1−x

find the point of inflection. Next, determine the intervals, where the function is convex
(respectively concave).

Transposing formulae

The formula y = f (x) describes evolution of physical quantity f depending on another
physical quantity x. In physics, some processes are idealised as reversible. In this case, the
function describing the value quantity f is uniquely determined by the value of x. We say
that f is one-to-one.
This property can be formulated geometrically as follows:

Definition

The function y = f (x) is called one-to-one if and only if the graph of f and a horizontal
line y = q have at most one intersection point for any q ∈ R.

The prototypes of one-to one functions are odd powers, e.g. y = x3. On the other hand,
the even powers are not one-to-one.
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There is an easy-to-check criterion for any f to be one-to-one.

Theorem

• If the function f is increasing, it is one-to-one.

• If the function f is decreasing, it is one-to-one.

The function describing the process returning the system into the original state can be
computed by transposing the formula for f . The resulting function is called the inverse
function to f and denoted by f−1.

Theorem

For the one-to-one function y = f (x) with the domain D f and range I f , there exists
unique one-to-one inverse function to f defined on I f = D f−1 by the formula

f−1(y) = x if and only if f (x) = y.

Moreover, if f−1 is the inverse function to f , then f is the inverse function to f−1; i.e. the
inverse relation is mutual. Therefore, the graphs of the mutually inverse functions are
axially symmetric with respect to the line (axis) y = x.

The graphs of the mutually symmetric functions are axially symmetric.

Theorem

• If f is increasing then f−1 is increasing.

• If f is decreasing then f−1 is decreasing.

Note that the notation of the inverse function is ambiguous. In this context, the superscript
does not mean “ f to the power of−1”, as the inverse is made with respect to the composition
of functions and not multiplication. Therefore, it holds

f−1 ( f (x)) = x

and not f−1(x) · f (x) = 1. In another words, the inverse function f−1 is not equal to the
reciprocal function y = 1/ f , i.e. f−1(x) 6= 1/ f (x).
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What is the relation between the domain and range of the mutually inverse functions?
According to the definition and properties of f−1 it holds:

• D f = I f−1 and I f = D f−1 ,

• for every x ∈ D f and y ∈ D f−1 it holds

f−1( f (x)) = x and f ( f−1(y)) = y.

We often need to transpose a formula, which is not one-to-one, e.g. for the function y = x2.
We now describe how this could be done.

The procedure of finding the inverse function y = f−1(x) to the function y = f (x) can
be described as follows:

1. find the domain D f .

2. Decide if the function f is one-to-one. If it is not, find the biggest interval J, where
f is one-to-one, and take J as the domain of f , make a restriction of f on J. It is
denoted by f |J .

3. Compute the transposed formula for its inverse function.

4. Compute the domain and the range of the inverse function.

Example 84

Construct an inverse function to the function f : y = x2.

The function f is even, hence not one-to one. We choose J = 〈0, ∞) and construct f−1 for
f |J . As on a larger interval f is not one-to-one, the resulting f−1 would not be a function.

Constructing an inverse function f−1 to the even function, y = x2.

Notice that there might be a freedom of choice in the decision about the interval J. In the
preceding example, we could choose J = (−∞, 0〉. In practise, we make the decision based
on which points x ∈ D f we want to map.
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Example 85

Let be given the function

f (x) : y = 1− ln
(
−1 +

√
x
)

.

Decide if f is one-to-one. Compute the transposed formula for its inverse function f−1.
Write down the domains D f , D f−1 and ranges I f , I f−1 .

We start with the domain of f . From the two conditions involved by the square root, x ≥ 0,
and the logarithm, −1 +

√
x > 0, we get D f = (1, ∞).

Next we check if the function f is one-to-one, based on its monotonicity. We compute f ′,

y′ = − 1√
x− 1

· 1
2
√

x
.

This expression is negative on D f , as the first fraction is positive for x > 1, i.e. exactly on
D f , and the second fraction is positive even on the bigger interval 〈0, ∞). Therefore, f is
decreasing, thus one-to-one.
We compute the formula for the inverse by switching x ↔ y and expressing y:

x = 1− ln (−1 +
√

y)
ln (−1 +

√
y) = 1− x

−1 +
√

y = e1−x

√
y = 1 + e1−x

y =
(

1 + e1−x
)2

The domain D f−1 = R = I f and the range I f−1 = (1, ∞) = D f , as expected.

Example 86

Let be given the function

f (x) : y = 3− 2
1 + 2x + x2 .

Decide if f is one-to-one. If it is not, find the biggest interval J, where f is one-to-one
and take f |J .
Next, compute the transposed formula for its inverse function f−1. Write down the
domains D f , D f−1 and ranges I f , I f−1 .

We first rewrite the formula as follows:

f : y = 3− 2
(1 + x)2 .

Then, we see the domain D = R \ {−1} = (−∞,−1) ∪ (−1, ∞) more easily.
In order to show that f is one to one, we show the intervals of monotonicity. The derivative

y′ = (−2)(−2)(1 + x)−3 =
4

(1 + x)3
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is positive on J1 = (−1, ∞) and negative on J2 = (−∞,−1). Therefore, f is not monotone.
However, if we choose just one of the two intervals, f would be monotone, therefore one-
to-one. It can be also checked by the graph.
We choose J1 and restrict f on this interval, i.e. take J1 as the domain of f . Therefore, f is
increasing on J1, hence one-to-one.
We can also compute the inverse. We do it by switching x ↔ y in the formula for f and
expressing y:

x = 3− 2
(1 + y)2

2
(1 + y)2 = 3− x

(1 + y)2 =
2

3− x

1 + y =

√
2

3− x

y =

√
2

3− x
− 1

Just note that we have taken the positive square root in the next-to-last line, in order that

x
f→ y

f−1

→ x. Therefore, we get the range I f−1 = (−1, ∞) = J1, i.e., the interval we chose as
D f . The domain, D f−1 = (−∞, 3), coincides with the range I f .

Exercise 87

Decide if the given functions:
a) f (x) : y = 1− ln

(
−1 +

√
x
)

b) M(R) : M = π(R4 − r4)

c) f (x) : y = ln(1− ex)

d) p(b) :
p
q
=

√
a + 2b
a− 2b

e) f (x) : y = 3 + 2 · arccos
x
2

f) S(L) : S =

√
3d(L− d)

8

g) f (x) : y =
4x− 1
x + 3

h) y(r) : y + x =
r

4 + r

i) f (x) : y = ln(x− 1)− ln(x + 1)

j) f (x) : y = 3− 2
1 + 2x + x2

k) f (x) : y =
1

sin(x)

are one-to-one. Compute the transposed formula for its inverse function f−1. Write
down their domains and ranges.

6.5 Efficient computation of the limits with the l’Hôpital rule

When two functions approach zero, their ratio might do anything. That is why we call 0/0
an indeterminate expression. The results depends on the particular form of the expression
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6 APPLICATIONS OF THE DERIVATIVE

hidden behind the zeros in the numerator and the denominator. We might have

lim
h→0

h2

h
= 0 or lim

h→0

h
h
= 1 or lim

h→0

7h
h

= 7 or lim
h→0

√
h

h
= ∞.

What only matters is whether the numerator goes to zero more quickly than denominator.
There are eight typical indeterminate expressions:

0
0

,
±∞
±∞

, 0 ·∞, ∞−∞, 00, 0∞, ∞0, 1∞.

The efficient and powerful method to compute the limits of the indeterminate expressions
is named afted Guillaume François Antoine, Marquis de l’Hôpital (1661–1704), who pub-
lished it first in 1696. However the idea belongs probably to Jacob Bernoulli (1667–1748).

Theorem (L’Hôpital)

Suppose that
lim

x→x0
f (x) = lim

x→x0
g(x) = 0

or
lim

x→x0
f (x) = ±∞ and lim

x→x0
g(x) = ±∞.

Then it holds

lim
x→x0

f ′(x)
g′(x)

= a ⇒ lim
x→x0

f (x)
g(x)

= a

Example 88

Compute the limits

a) lim
h→0

cos h− 1
h

b) lim
h→0

sin h
h

used for the deduction of the rules for the derivative of sine and cosine functions.

Both expressions are of the form 0/0, so we can use the l’Hôpital rule.
a) Formally, we should proceed carefully and start by computing the limit of the ratio of
the derivatives:

lim
h→0

(cos h− 1)′

(h)′
= lim

h→0

− sin h
1

= sin(0) = 0.

If this limit exists, then the original limit also exists and they are the same:

lim
h→0

(cos h− 1)′

(h)′
= 0 ⇒ lim

h→0

cos h− 1
h

= 0.

b) In the most cases the limit exists, even if perhaps after multiple derivatives. Therefore,
we simplify the formal procedure:

lim
h→0

sin h
h

l’H
= lim

h→0

cos h
1

= cos(0) = 1.
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6 APPLICATIONS OF THE DERIVATIVE

Example 89

Compute the limit

lim
x→∞

x + sin x
x

.

The expression is of the form ∞/∞, so we can apply l’Hôpital rule:

lim
x→∞

x + sin x
x

l’H
= lim

x→∞

1 + cos x
1

= 1 + cos(∞).

This limit does not exist, as the cosine function oscillates for x → ∞. However, from this
fact we cannot deduce that the original limit does not exist! Just, in this rare case, l’Hôpital
rule did not give us any answer and we should proceed with a different method:

lim
x→∞

x + sin x
x

= lim
x→∞

x
x
+

sin x
x

= 1 + lim
x→∞

sin x
x

= 1,

because the last limit is zero, as the limit of the expression of the form n/∞, with n ∈
[−1, 1].

Exercise 90

Solve:

a) lim
x→0

sin(4x)
x

b) lim
x→0

tan2(2x)
2x2

c) lim
x→∞

1− e2x

x4

d) lim
x→∞

ln2 x
x2 + 1

For the limits of quotient of the power functions it holds:

lim
x→∞

axm

bxn =


∞ for m > n
a
b for m = n
0 for m < n

Exercise 91

Solve:

a) lim
x→∞

4x2 + 6x + 9
x4 + 2x2 + 1

b) lim
x→∞

3
√

8x3 − 1
(x− 2)2

c) lim
x→∞

x3 − 7x2 − 1
6x2 + 9x + 15

d) lim
x→∞

√
9x4 + 8x2 + 1

3x− 1

e) lim
x→∞

4x3 − 1
7x3 + 6x2 + 5x + 4

f) lim
x→∞

√
2x4 − 4x2

3x2 + 2x + 1
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6 APPLICATIONS OF THE DERIVATIVE

One-sided limits

Sometimes we can approach the point, where we need to compute the limit, just from one
side, e.g. due to the restrictions in the domain of the function. That is what we call one-
sided limit. We usually speak about limit from the right, denote it by the small plus in
the superscript x → x+0 , and limit from the left, denoted analogically by x → x−0 . We
also often speak about left neighborhood N−(x0) = (x0 − δ, x0) and right neighborhood
N+(x0) = (x0, x0 + δ) of theo point x0.
Strictly speaking, the limits for x → ∞ and x → −∞, can be also regarded as one sided
limits.

Theorem

The function f has the limit L for x → x0 if and only if

lim
x→x−0

f (x) = L = lim
x→x+0

f (x).

The one sided limits are used mostly for the computing the expressions a/0:

We say that

lim
x→x0

f (x)
g(x)

, with lim
x→x0

f (x) = a and lim
x→x0

g(x) = 0

is an expression of the form a/0. For its value it holds:

a
0
= ∞

{
a > 0 and g(x) positive
a < 0 and g(x) negative

a
0
= −∞

{
a > 0 and g(x) negative
a < 0 and g(x) positive

Example 92

Compute the limit

lim
x→0+

√
x

x2 .

As D = (0, ∞), we can only compute the limit at x = 0 from the right only. The expression
is of the form 0/0 and we can use l’Hôpital rule, as usual:

lim
x→0+

√
x

x2
l’H
= lim

x→0+

1
2 x−

1
2

2x
= lim

x→0+

1
4x
√

x
= “ 1

+0” = ∞.

Example 93

Compute the limit

lim
x→1

1
x2 − 1

.
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6 APPLICATIONS OF THE DERIVATIVE

The limit is of the form 1/0 and the denominator changes sign at x = 1. Therefore, we
compute the one-sided limits:

lim
x→1−

1
x2 − 1

=
1
0
= −∞,

as the denominator is negative on a left neighborhood, e.g. N−(1) = (0, 1),

lim
x→1+

1
x2 − 1

=
1
0
= +∞,

as the denominator is positive on a right neighborhood, e.g. N+(1) = (1, 8).
As the one sided limits have different values, the standard limit, limx→1

1
x2−1 does not exist.

L’Hôpital rule and indeterminate expressions

The indeterminate expressions not covered by l’Hôpital rule may be rearranged to the form
±∞
±∞ or 0

0 .
We start with the expressions of the form 0 ·∞. For them it holds:

0 ·∞ = 0 · 1
1
∞

=
0
0

or 0 ·∞ =
1
1
0

·∞ =
∞
∞

.

Which one should we use? Generally speaking the one, which provides nicer expression
for the derivative.

Example 94

Compute lim
x→0+

x · ln x.

The expressions of the form 0 · (−∞) = (−1) · 0 ·∞. We show the both ways of tranforma-
tion:

lim
x→0+

x · ln x = lim
x→0+

1
1
x
· ln x = lim

x→0+

ln x
1
x

l’H
= lim

x→0+

1
x

(−1)x−2 = lim
x→0+

−x = 0

We just note that the other possibility leads to nowhere.

We turn to the expression ∞ −∞. The infinities most often arise when we divide by the
variable x anf let x go to zero. The expression 0/0 can be handled by l’Hôpital rule. For
the expressions with non-zero numerator, i.e. a/0 we use the procedure prom the previus
page, a/0 = ±∞.
That is why the expression ∞−∞ may be usually expanded with a common denominator,
which transforms it into either 0/0 or a/0.

Example 95

Compute lim
x→1

(
1

ln x
− 2

x− 1

)
.
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6 APPLICATIONS OF THE DERIVATIVE

First we rewrite the bracket using the common denominator (x− 1) ln x:

lim
x→1

(
1

ln x
− 1

x− 1

)
= lim

x→1

(
x− 1− ln x
(x− 1) ln x

)
,

which is of the form 0/0, and next we can use L’Hôpital rule

lim
x→1

(
x− 1− ln x
(x− 1) ln x

)
l’H
= lim

x→1

(
1− 1

x

ln x + (x− 1) 1
x

)
=

(
0
0

)
l’H
= lim

x→1

(
− 1

x2

1
x + 1

x2

)
= lim

x→1

1
x + 1

=
1
2

Exercise 96

Compute the following limits:

a) lim
x→∞

(√
x2 + 2x− 2x

)
b) lim

x→0
x · cot(x)

c) lim
x→∞

(√
x2 + x− 1− x

)
d) lim

x→−∞
x · ex

6.6 Tangent lines at improper points: the asymptotes

The asymptotes are special tangent lines that meet the graph at infinity. This is why we
need to use limits to decide about asymptotes. We have three types of asymptotes:

Definition

Vertical asymptote aV : x = x0:

lim
x→x0±

f (x) = ±∞

Horizontal asymptote AH : y = a:

lim
x→∞

f (x) = a

Oblique asymptote aO : y = k · x + q:

k = lim
x→∞

f (x)
x

q = lim
x→∞

f (x)− k · x
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Remark

a) We note that when f is elementary continuous function, the only possibility of a ver-
tical asymptote arises at the border points of the domain intervals D = (a, b). There-
fore we require only the existence of one one-sided limit for the existence of the vertical
asymptote.

b) In some cases, there might exist a different oblique asymptote for x → −∞.

The three types of asymptotes.

Example 97

Write down the equations of all asymptotes to the graph of the function

f : y =
x2 − 1

x
.

We first determine the domain of f . Due to the x in the denominator, we have D = R \
{0} = (−∞, 0) ∪ (0, ∞).

Therefore, the existence of the only possible vertical asymptote aV : x = 0 will be deter-
mined by the limit

lim
x→0

x2 − 1
x

= “
(
−1
0

)
” ±∞

As the one-sided limit from the left is ∞ and from the right −∞, the asymptote indeed
exists.

Next, we decide if there is horizontal or oblique asymptote. As

lim
x→∞

x2 − 1
x

l’H
= lim

x→∞

2x
1

= ∞

there is no horizontal asymptote.
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6 APPLICATIONS OF THE DERIVATIVE

Finally, we compute the formula for the oblique asymptote:

k = lim
x→∞

x2−1
x
x

= lim
x→∞

x2 − 1
x2

l’H
= lim

x→∞

2x
2x

= 1

q = lim
x→∞

x2 − 1
x
− 1 · x = “(∞−∞)” = lim

x→∞

x2 − 1− x2

x
= lim

x→∞

−1
x

= 0

The same holds also for x → −∞ and we have unique oblique asymptote y = x.

The situation is nicely visible form the graph:

The function f : y =
x2 − 1

x
and its asymptotes.

Example 98

Write down the equations of all asymptotes to the graph of the function

f : y = arctan
(

1
x

)
.

We first determine the domain of f . Due to the 1/x in the argument we have D = R\ {0} =
(−∞, 0) ∪ (0, ∞).

Therefore, the existence of the only possible vertical asymptote aV : x = 0 will be deter-
mined by the limit

lim
x→0

arctan
(

1
x

)
= “arctan

(
1
0

)
= arctan(±∞)”

We treat the cases separately. First, we take x > 0 and substitute y = 1/x. We get

lim
x→0+

arctan
(

1
x

)
= lim

y→∞
arctan (y) =

π

2
,

as the function arctan is increasing and I = (−π
2 , π

2 ). Similarly,

lim
x→0−

arctan
(

1
x

)
= lim

y→−∞
arctan (y) = −π

2
.
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Hence, the one-sided limits are different and finite. Therefore, the vertical asymptote does
not exist.

Next, we decide if there is horizontal or oblique asymptote. As

lim
x→∞

arctan
(

1
x

)
= arctan(0) = 0,

we have the horizontal asymptote y = 0 and there is no oblique asymptote.

Exercise 99

Draw the asymptotes into the graph of the function f : y = arctan
(

1
x

)
.

Exercise 100

Write down the equations of all asymptotes to the graph of the functions:

a) y =
x− 4

2x + 6

b) y =
1

x2 + x− 2

c) y =
x + 1
x2 − 4

d) y =
x2 − 2x + 2

3x− 4

e) y =
x2

1− x

f) y = 3− 2x +
1
x2

g) y =
1− x2

x2 + 3x + 4

h) y =
x3 + 3x2 + 1

x2 + 2

i) y = x · e−2x

j) y = x2 · e−x

k) y = ln
x + 1
x− 1

l) y =
sin x

x

m) y =
cos x

x

n) y =
x
2
− cos x

o) y = x + arctan
x
2

p) y = arctan
x + 1

x
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